首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The highly odorous compound methanethiol, CH3SH, is commonly produced in biodegradation of biomass and industrial processes, and is classed as 2000 times more odorous than NH3. However, there is no simple analytical method for detecting low parts-per-billion in volume ratio (ppbv) levels of CH3SH. In this study, a micro gas analysis system (μGAS) was developed for continuous or near real time measurement of CH3SH at ppbv levels. In addition to a commercial fluorescence detector, a miniature high sensitivity fluorescence detector was developed using a novel micro-photomultiplier tube device. CH3SH was collected by absorption into an alkaline solution in a honeycomb-patterned microchannel scrubber and then mixed with the fluorescent reagent, 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). Gaseous CH3SH was measured without serious interference from other sulfur compounds or amines. The limits of detection were 0.2 ppbv with the commercial detector and 0.3 ppbv with the miniature detector. CH3SH produced from a pulping process was monitored with the μGAS system and the data agreed well with those obtained by collection with a silica gel tube followed by thermal desorption–gas chromatography–mass spectrometry. The portable system with the miniature fluorescence detector was used to monitor CH3SH levels in near-real time in a stockyard and it was shown that the major odor component, CH3SH, presented and its concentration varied dynamically with time.  相似文献   

3.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

4.
A reagent tablet for determination of fluoride ion has been prepared using ethylenediamine-N,N,N′,N′-tetraacetate complex of zirconium (Zr-EDTA), 3-hydroxy-2′-flavone (FS) and an appropriate pH buffer. Dissolving of the tablet into water exhibits an intense blue fluorescence (λmax = 460 nm) upon excitation at 377 nm and the fluorescence intensity decreases with the presence of fluoride ion. Hence, a simple fluorescent detection procedure for fluoride ion in aqueous media was successfully constructed with this tablet. The principle of this detection system is the ligand exchange reaction of FS bound to Zr-EDTA with fluoride ion. The present system provides an easy, rapid and selective determination method of fluoride ion ranging from 5 × 10−6 to 1 × 10−3 mol dm−3. The measurement of real samples with this tablet showed the similar results as those by the common method with the Alfusone reagent.  相似文献   

5.
{[(N-Methyl-N-p-R-benzyl)amino]benzyl}ferrocenes 4ac (R = H(a), OCH3(b), CH3(c)) were synthesized by N-methylation of the corresponding sec-amines 3acwith the reagent CH3I-t-BuOK. Treatment of 4ac with Na2PdCl4 in the presence of NaOAc produced a pair of palladacycles σ-Pd[(η5-C5H5)Fe(η5- C5H3CH(C6H5)N(CH3)CH2-C6H4-R)]Cl(PPh3) 5ac (R = same as before) consisting of RNRP and SNSP configurations. The structure of 5a was determined by single crystal X-ray analysis. High catalytic activities of 5ac for the Suzuki coupling of aryl chlorides with phenylboronic acid and the Heck reaction of bromobenzene with styrene were observed.  相似文献   

6.
The reaction between uranyl nitrate hexahydrate and phenolic ligand precursor [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4-amino-1-butanol) · HCl], H3L1 · HCl, leads to a uranyl complex [UO2(H2L1)2] (1a) and [UO2(H2L1)2] · 2CH3CN (1b). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-4-amino-1-butanol)H3L2 · HCl], H3L2 · HCl, yields a uranyl complex with a formula [UO2(H2L2)2] · CH3CN (2). The ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-5-amino-1-pentanol) · HCl], H3L3 · HCl, produces a uranyl complex with a formula [UO2(H2L3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-5-amino-1-pentanol) · HCl], H3L4 · HCl, leads to a uranyl complex with a formula [UO2(H2L4)2] · 2CH3CN (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol) · HCl], H3L5 · HCl, leads to a uranyl complex with a formula [UO2(H2L5)2] · 4toluene (5). The complexes 15 are obtained using a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine). The molecular structures of 1a, 1b, 3, 4 and 5 were verified by X-ray crystallography. All complexes are neutral zwitterions and have similar centrosymmetric, mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands in an equatorial plane. In uranyl ion extraction studies from water to dichloromethane with ligands H3L1 · HCl–H3L5 · HCl, ligands H3L1 · HCl, H3L4 · HCl and H3L5 · HCl are the most effective ones.  相似文献   

7.
A series of yttrium and lutetium alkyl complexes [Ln(η5-C5Me4ZNR′-κN)(CH2SiMe3)(THF)n] (Ln = Y, Lu) was prepared by reacting the tris(trimethylsilylmethyl) precursor [Ln(CH2SiMe3)3(THF)2] with different linked amino-cyclopentadienes of the type (C5Me4H)ZNHR′ (Z = SiMe2, CH2SiMe2; R′ = tBu, Ph, C6H4-tBu-4, C6H4-nBu-4). The catalytic activity of these alkyl complexes in the hydrosilylation of 1-decene and styrene using PhSiH3 as reagent was examined under standard conditions. A significant influence of the ligand structure on the catalytic property (turnover frequency, regioselectivity) was observed with the yttrium complex [Y(η5-C5Me4CH2SiMe2NtBu-κN)(CH2SiMe3)(THF)] being the most active for 1-decene hydrosilylation.  相似文献   

8.
Two procedures for the synthesis of group 4 phosphaguanidine compounds M(R2PC{NR′}2)(NR″2)3 (M = Ti, Zr; R = Ph, Cy; R′ = iPr, Cy; R″ = Me, Et) are described. Spectroscopic characterization indicated symmetrical bonding of the phosphaguanidinate ligand in solution for the P-diphenyl derivatives whereas the P-dicyclohexyl analogs adopt a more rigid geometry with inequivalent Namidine substituents within the phosphaguanidinate ligand. X-ray diffraction studies show exclusively monomeric tbp metal centers for a series of derivatives, with a chelating phosphaguanidinate ligand that spans an axial and an equatorial position. Two different conformers have been identified in the solid-state that differ in the relative orientation of the phosphorus R2P–C substituents with respect to the equatorial plane of the tbp metal. The synthetic protocol was extended to the bimetallic complex, [PhP(C{NiPr}2Ti{NMe2}3)CH2–]2, which was characterized by crystallography as the meso-form.  相似文献   

9.
Yohei Kiyotsuka 《Tetrahedron》2010,66(3):676-6255
Substitution of optically active allylic picolinate, cis R1-CH(OC(O)(2-Py))CHCHR2 (R1=(CH2)2Ph, R2=CH2OTBS), with phenylcopper reagents derived from salt free PhLi (2 equiv) and CuBr·Me2S (2 and 1 equiv, respectively) was highly promoted by MgBr2 (3 equiv), producing anti SN2′ product regio- and stereoselectively. This reagent system was proven to be general with several picolinates (R1, R2: Ph(CH2)2, PMBO(CH2)3, Me, TBSOCH2, PMBOCH2, c-Hex). Furthermore, aryl copper reagents prepared from ArLi, which was in turn prepared by Li-halogen exchange, was proven to be compatible with the substitution in the presence of larger quantity of MgBr2 than that of LiX coproduced by the exchange. Substitution was not interfered with the steric hindrance on aryl coppers (Ar: 2-MeOC6H4, 2,6-(MOMO)2-4-MeC6H2, 2,6-Me2C6H3, etc.). Similarly, stereodefined cis and trans alkenyl, furyl, and thienyl reagents gave the corresponding anti SN2′ products efficiently.  相似文献   

10.
Free-standing anion-exchange polyethylene oxide (PEO)–SiO2 hybrid membranes with higher flexibility and good mechanical strength (tensile strength (TS) as high as 20.55 MPa) as well as high temperature tolerance (thermal degradation temperature in air, Td, in the range of 220–240 °C) were prepared through sol–gel reaction of different precursors: charged alkoxysilane-functionalized PEO-1000 (PEO-[Si(OCH3)3]2(+)), N-triethoxysilylpropyl-N,N,N-trimethylammonium iodine (A-1100(+)), monophenyltriethoxysilane (EPh) and in some cases also tetraethoxysilane (TEOS). Properties of the hybrid membranes, such as the thermal stability, tensile properties, hydrophilicity, and electrical performances, can be controlled by changing the feed ratio of the different sol–gel precursors. The results showed that some of the membranes have relatively good conductivity (∼0.003 S/cm) and so may find potential applications in alkaline membrane fuel cells.  相似文献   

11.
The quantitative determination of oxide concentration by laser-induced breakdown spectroscopy is relevant in various fields of applications (e.g.: analysis of ores, concrete, slag). Calibration free laser-induced breakdown spectroscopy and the multivariate calibration are among the methods employed for quantitative concentration analysis of complex materials. We measured the intensity of neutral and ionized atomic emission lines of oxide materials by laser-induced breakdown spectroscopy and we modified the calibration free laser-induced breakdown spectroscopy method to increase the accuracy. The concentration of oxides was obtained by using stoichiometric relations. Sample materials were prepared from oxide powder (Fe2O3, MgO, CaO) by mixing and pressing. The concentration was 9.8–33.3 wt.% Fe2O3, 7.6–33.3 wt.% MgO and 33.3–81.2 wt.% CaO for different samples. Nd:YAG laser (wavelength 1064 nm, pulse duration ≈ 6 ns) ablation was performed in air. The laser-induced plasma emission was measured by an Echelle spectrometer equipped with a sensitivity calibrated ICCD camera. The numerical calibration free laser-induced breakdown spectroscopy algorithm included the fast deconvolution of instrumental function, and the correction of self-absorption effects. The oxide concentration CCF calculated from calibration free laser-induced breakdown spectroscopy results and the nominal concentration CN were very close for all samples investigated. The relative error in concentration, |CCFCN|/CN, was < 10%, < 20%, and < 5% for Fe2O3, MgO, and CaO, respectively. The results indicate that this method can be employed for the analysis of major elements in multi-component technical materials.  相似文献   

12.
The syntheses of five new aminoalkylbis(phenolate) ligands (as hydrochlorides) and their uranyl complexes are described. The reaction between uranyl nitrate hexahydrate and phenolic ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminopropane) · HCl], H2L1 · HCl, forms a uranyl complex [UO2(HL1)2] · 2CH3CN (1). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane) · HCl], H2L2 · HCl, forms a uranyl complex with a formula [UO2(HL2)2] · 2CH3CN (2). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methyl benzyl)-1-aminohexane) · HCl], H2L3 · HCl, yields a uranyl complex with a formula [UO2(HL3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-cyclohexylamine) · HCl], H2L4 · HCl, yields a uranyl complex with a formula [UO2(HL4)2] (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-benzylamine) · HCl], H2L5 · HCl, forms a uranyl complex with a formula [UO2(HL5)2] · 2MeOH (5). The molecular structures of 1, 2′ (2 without methanol), 3, 4 and 5 were verified by X-ray crystallography. The complexes 15 are neutral zwitterions which form in a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine) and bear similar mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands forming an equatorial plane and resulting in a centrosymmetric structure for the uranyl ion. In uranyl ion extraction studies from water to dichloromethane with ligands H2L1 · HCl–H2L5 · HCl, the ligands H2L2 · HCl and H2L4 · HCl are the most effective ones.  相似文献   

13.
Several (azido)iridium(III) complexes having a pentamethylcyclopentadienyl (Cp∗) group, [Cp∗Ir(N3)2(Ph2Ppy-κP)] (1: Ph2Ppy = 2-diphenylphosphinopyridine), [Cp∗Ir(N3)(Ph2Ppy-κP,κN)]CF3SO3 (2), [Cp∗Ir(N3)(dmpm)]PF6 (3: dmpm = bis(dimethylphosphino)methane), [Cp∗Ir(N3)(Ph2Pqn)]PF6··CH3OH (4··CH3OH: Ph2Pqn = 8-diphenylphosphinoquinoline), and [Cp∗Ir(N3)(pybim)] (5: Hpybim = 2-(2-pyridyl)benzimidazole) have been prepared and their crystal structures have been analyzed by X-ray diffraction. In complex 1, the Ph2Ppy ligand is only coordinated via the P atom (-κP), while in 2 it acts as a bidentate ligand through the P and N atoms (-κP,κN) to form a four-membered chelate ring. Comparing the structural parameters of the chelate ring in 2 with those of a similar five-membered chelate ring formed by Ph2Pqn in 4, it became apparent that the angular distortion in the Ph2Ppy-κP,κN ring was remarkable, although the Ir–P and Ir–N bonds in the Ph2Ppy-κP,κN ring were not elongated very much from the corresponding bonds in the Ph2Pqn-κP,κN ring. In the pybim complex 5, the five-membered chelate ring was coplanar with the pyridine and benzimidazolyl rings. With the related (azido)iridium(III) complexes analyzed previously, comparison of the structural parameters of the Ir–N3 moiety in [Cp∗IrIII(N3)(L–L′)]+/0 complexes reveals an anomalous feature of the 2,2′-bipyridyl (bpy) complex, [Cp∗Ir(N3)(bpy)]PF6.  相似文献   

14.
Room-temperature reactions of the atomic cations Sr+ and Rb+ have been surveyed systematically with a variety of gases using an Inductively-Coupled Plasma/Selected-Ion Flow Tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and product distributions have been measured in He buffer gas at 0.35 Torr and 295 K for reactions of Sr+ and Rb+ with CH3F, CH3Cl, N2O, CO2, CS2, SF6, D2O and NH3. Rb+ (s0) is seen to be quite inert with these molecules and reacts either slowly by molecule addition or not at all, while Sr+ (s1) is much more reactive with all these 8 molecules, especially with CH3F, CH3Cl, N2O and SF6. Sr+ reacts with CH3F and SF6 by F-atom transfer, with CH3Cl by Cl-atom transfer and with N2O by O-atom transfer, and the reaction rate coefficients are all quite high, k ≥ 1.4 × 10−11 cm3 molecules−1 s−1. The extreme differences in reactivity with CH3F, SF6, CH3Cl and N2O provide a chemical basis for the separation of isobaric interferences of 87Rb+ and 87Sr+ often encountered in ICP-MS. Among these four molecules, SF6 exhibits the largest difference in reactivity, almost a factor of 104, and so is identified as the kinetically recommended reagent for the chemical resolution of the isobaric interference of 87Rb+ and 87Sr+.  相似文献   

15.
Two new cyano bridged Cu–Co and Cu–Fe trinuclear bimetallic assemblies, [(CuL)[Co(CN)6](CuL)]ClO4 · 3.5H2O (1) and [(CuL)[Fe(CN)6](CuL)] · 13H2O (2) where [L = (3E,5E)-N1,N4-bis((pyridin-2-yl)methylene)butane-1,4-diamine] have been prepared using cyanometallates as anion precursors and characterised by elemental analyses, spectroscopic studies, single crystal X-ray diffraction and cryomagnetic susceptibility measurements. Magneto-structural correlations have been drawn from cryomagnetic susceptibility measurements over a wide temperature range (2–300 K) under 0.5 T magnetic fields. Weak antiferromagnetic interactions with J = −0.81 and −0.73 cm−1 are found for 1 and 2, respectively, showing a very weak coupling, as expected from the diamagnetic long chain –NC–Co–CN–CN– and –NC–Fe–CN–CN– bridges revealed from the single crystal X-ray diffraction studies.  相似文献   

16.
A series of poly(aryl ether benzimidazole) copolymers bearing different aryl ether linkage contents were synthesized by condensation polymerization in polyphosphoric acid (PPA) by varying the feed ratio of 4,4′-dicarboxydiphenyl ether (DCPE) to terephthalic acid (TA). As the ether unit content in the copolymer increased, the solubility of the copolymer in PPA and N,N′-dimethylacetamide/LiCl improved. For example 3–7 wt.% DMAc solution containing 2 wt.% of LiCl could be prepared from the copolymers. XRD studies revealed that the incorporation of flexible aryl ether linkages increased the chain d-spacings of the polymer backbones and decreased the crystallinity of the copolymers. Still, these copolymers having ether linkages showed reasonably good thermal/mechanical stability and high proton conductivity. For example, the copolymer with 30 mol% ether linkage had a tensile strength of 43 MPa (at 26 °C and 40% relative humidity) at an acid doping level of 7.5 mol H3PO4 and a proton conductivity of 0.098 S cm−1 (at 180 °C and 0% relative humidity) at an acid doping level of 6.6 mol H3PO4.  相似文献   

17.
The effect of silica nanoparticles on the gas separation properties of ethylene vinyl acetate (EVA) copolymer containing 28% vinyl acetate has been investigated. The EVA and hybrid EVA–silica membranes were prepared via thermal phase inversion method. Silica nanoparticles prepared by hydrolysis of tetraethylorthosilicate (TEOS), through the sol–gel mechanism. The prepared membranes were characterized using FT-IR, SEM, DSC and XRD methods. FT-IR and SEM results indicated the nanoscale dispersion of silica particles in polymer matrix. As confirmed by XRD and DSC analyses, increasing the silica content enhances the amorphous regions significantly. Gas permeation of EVA–silica nanocomposite membranes with silica contents of 5, 6 and 10 wt.% was studied for N2, O2, CO2 and CH4 single gases at pressures of 4, 6 and 8 bar. The obtained results suggest a significant increase in permeability of all gases and an increase in CO2/N2 and CO2/CH4 gases selectivities upon increasing the silica content. The possible reasons for such behavior were stated and discussed. The pressure dependence of the gas permeabilities of the membranes was also investigated.  相似文献   

18.
Water-soluble functionalized bis(phosphine) ligands L (ah) of the general formula CH2(CH2PR2)2, where for a: R = (CH2)6OH; bg: R = (CH2)nP(O)(OEt)2, n = 2–6 and n = 8; h: R = (CH2)3NH2 ( Scheme 1), have been prepared photochemically by hydrophosphination of the corresponding 1-alkenes with H2P(CH2)3PH2. Water-soluble palladium complexes cis-[Pd(L)(OAc)2] (18) were obtained by the reaction of Pd(OAc)2 with the ligands ah in a 1:1 mixture of dichloromethane:acetonitrile. The water-soluble phosphine ligands and their palladium complexes were characterized by IR, 1H and 31P NMR. A crystallographic study of complex 1 shows that the Pd(II) ion has a square planar coordination sphere in which the acetate ligands and the diphosphine ligand deviate by less than 0.12 Å from ideal planar.  相似文献   

19.
A series of novel hemi-disclike four coordinated distorted square planar Zn(II) Schiff base complexes containing 4-substituted alkoxy chains on the side aromatic ring [Zn (4−CnH2n+1O)2 salophen], n = 14, 16, 18 and salophen = N,N′-4-methyl phenylene bis (salicylideneiminato), have been prepared and their mesogenic, photophysical properties were investigated. The phase behavior of these compounds were characterized by differential scanning calorimetry, polarized optical microscopy and variable temperature PXRD study. The ligands are non-mesogenic but the complexes exhibited an unprecedented 2D-hexagonal columnar mesophase (Colh) in the temperature 175–185 °C range. In the mesophase (Colh), the molecules self assemble in a columnar stack in antiparallel fashion. All λmax of the UV–Vis absorption and photoluminescence band occurred at ca. 291–425 and 504–524 nm, respectively. The ligands are non-emissive, but on coordination with Zn(II), the complexes show intense green emission at room temperature in dichloromethane solution (∼505 nm, Φ = 20%) as well as in solid (∼522 nm, Φ = 9%) at 360 nm excitation. The DFT calculations were performed using Dmol3 program at BLYP/DNP level to obtain the stable electronic structure of the complex. A small LUMO-HOMO band gap (∼2.1 eV), presumably suggests a rather strong electronic correlation among the molecules along the column.  相似文献   

20.
The reaction of PhHgOAc with N-NHCO-2-C4H3S-Htpp (5) and N-p-HNSO2C6H4tBu-Htpp (4) gave a mercury (II) complex of (phenylato) (N-2-thiophenecarboxamido-meso-tetra phenylporphyrinato)mercury(II) 1.5 methylene chloride solvate [HgPh(N-NHCO-2-C4H3S-tpp) · CH2Cl2 · 0.5C6H14;  6 · CH2Cl2 · 0.5C6H14] and a bismercury complex of bisphenylmercury(II) complex of 21-(4-tert-butyl-benzenesulfonamido)-5,10,15,20-tetraphenylporphyrin, [(HgPh)2(N-p-NSO2C6H4tBu-tpp); 7], respectively. The crystal structures of 6 · CH2Cl2 · 0.5C6H14 and 7 were determined. The coordination sphere around Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 is a sitting-atop derivative with a seesaw geometry, whereas for the Hg(1) in 7, it is a linear coordination geometry. Both Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 acquire 4-coordination with four strong bonds [Hg(1)–N(1) = 2.586(3) Å, Hg(1)–N(2) = 2.118(3) Å, Hg(1)–N(3) = 2.625(3) Å, and Hg(1)–C(50) = 2.049(4) Å for 6 · CH2Cl2 · 0.5C6H14; Hg(2)–N(1) = 2.566(6) Å, Hg(2)–N(2) = 2.155(6) Å, Hg(2)–N() = 2.583(6) Å, and Hg(2)–C(61) = 2.064(7) Å for 7]. The plane of the three pyrrole nitrogen atoms [i.e., N(1)–N(3)] strongly bonded to Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and to Hg(2) in 7 is adopted as a reference plane 3N. For the Hg2+ complex in 6 · CH2Cl2 · 0.5C6H14, the pyrrole nitrogen bonded to the 2-thiophenecarboxamido ligand lies in a plane with a dihedral angle of 33.4° with respect to the 3N plane, but for the bismercury(II) complex in 7, the corresponding dihedral angle for the pyrrole nitrogen bonded to the NSO2C6H4tBu group is found to be 42.9°. In the former complex, Hg(1)2+ and N(5) are located on different sides at 1.47 and −1.29 Å from its 3N plane, and in the latter one, Hg(2)2+ and N(5) are also located on different sides at −1.49 and 1.36 Å form its 3N plane. The Hg(1)?Hg(2) distance in 7 is 3.622(6) Å. Hence, no metallophilic Hg(II)?Hg(II) interaction may be anticipated. NOE difference spectroscopy, HMQC and HMBC were employed to unambiguous assignment for the 1H and 13C NMR resonances of 6 · CH2Cl2 ·  0.5C6H14 in CD2Cl2 and 7 in CDCl3 at 20 °C. The 199Hg chemical shift δ for a 0.05 M solution of 7 in CDCl3 solution is observed at −1074 ppm for Hg(2) nucleus with a coordination number of four and at −1191 ppm for Hg(1) nucleus with a coordination number of two. The former resonance is consistent with that chemical shift for a 0.01 M solution of 6 in CD2Cl2 having observed at −1108 ppm for Hg(1) nucleus with a coordination number of four.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号