首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly enantio-enriched perfluoroalkyl amines are shown to be synthesized by perfluoroalkylation and asymmetric reduction of nitriles. Perfluoroalkylation of nitriles can be attained by the Lewis acidic perfluoroalkyl titanate reagents to give acyclic ketimines. Catalytic asymmetric hydrogenation of the acyclic ketimines affords the perfluoroalkyl amine products in up to 93% ee.  相似文献   

2.
Pengcheng Wu  Mounuo Cheng  Jian Sun 《Tetrahedron》2008,64(49):11304-11312
l-Pipecolinic acid derived N-formamides have been developed as new Lewis basic organocatalysts that promote the asymmetric reduction of N-aryl ketimines using trichlorosilane as the reducing agent. The substituent on N4 of the piperazinyl backbone and the 2-carboxamide group both proved to have profound effects on the efficacy of the catalyst. The reductions of both N-aryl acyclic methyl ketimines and non-methyl ketimines were catalyzed to afford the desired amines in good to high yield and enantioselectivity. In particular, catalyst 6e enabled the reduction of the difficult bulky ketimines to be highly efficient and enantioselective, affording up to 99% yield and 97% ee. This catalyst proved to prefer the relatively bulkier non-methyl acyclic ketimines to the methyl ketimines as substrate, which is so far unprecedented in catalytic asymmetric reduction of imines.  相似文献   

3.
In this paper the addition of organolithium reagents to chiral imidoylphenols to prepare enantiopure phenolic Mannich-type bases is described. The experimental data show that this kind of imine is surprisingly reactive toward organolithium reagents, differently from classical imines, and does not need any Lewis acid or base activation. Moreover, interesting results have been obtained with aldimines but more unusually with ketimines. This reaction results in high yields and diastereoselectivities and allows the preparation of aminophenols quaternary at the C-1 carbon atom, which cannot be prepared with the methods available till now. The sense of asymmetric induction has been explained and confirmed in agreement with the results previously obtained by hydride reduction of the same substrates. In some cases this procedure is complementary to the reductive one, allowing the preparation of the diastereomers less abundant in the reduction. The reaction allows the synthesis of one or the other of the two diastereomers, choosing the opportune starting imidoylphenol and the organolithium reagent.  相似文献   

4.
A highly diastereoselective reductive Mannich coupling of ketimines and alpha,beta-unsaturated esters was developed using CuOAc-PPh(3) or CuOAc-MePPh(2) complex as a catalyst (5 mol %) and pinacolborane as a reducing reagent. The reaction was easily conducted at room temperature, and the substrate generality was broad. This platform methodology was extended to the first catalytic asymmetric reductive Mannich reaction of ketimines using CuOAc-DIFLUORPHOS as the catalyst (10 mol %). Switching the reducing reagent from pinacolborane to (EtO)(3)SiH was key to inducing the high enantioselectivity (82-93% ee). High diastereoselectivity was also maintained (3:1 approximately 30:1). Thus, products containing contiguous tetra- and trisubstituted carbons were catalytically synthesized with high stereoselectivities. Products were converted to alpha,beta,beta-trisubstituted (beta(2,3,3)) amino acid derivatives without any racemization and epimerization through simple treatment under acidic conditions. This method is the first entry of the catalytic asymmetric synthesis of beta(2,3,3)-amino acid derivatives, which constitute important chiral building blocks of biologically significant molecules.  相似文献   

5.
A new family of Lewis basic 2-pyridyl oxazolines have been developed, which can act as efficient organocatalysts for the enantioselective reduction of prochiral aromatic ketones and ketimines with trichlorosilane, a readily available and inexpensive reagent. 1-Isoquinolyl oxazoline, derived from mandelic acid, was identified as the most efficient catalyst of the series, capable of delivering high enantioselectivities in the reduction of both ketones (up to 94% ee) and ketimines (up to 89% ee).  相似文献   

6.
The reaction of ethyl esters of 4-methyl-2-oxo-2H-l-benzo(naphtho) pyran.3-carboxylic acids (1) with aromatic aldehy-des in the presence of piperidine yielded 4-styryl-3-carboxami-dopiperidyl connmrin derivatives 4. The reaction of hydrazlne hydrate with 1 gave acetophenone hydrozone derivatives 5 and acetophenone azine derivatives 6. The reaction of 1 with prima-ry amines afforded compomlds 7—9. And the treatment of la with Grignard reagents afforded 3-aroyl-4-methyl coumarin derivatives 10.  相似文献   

7.
The ruthenium complex prepared from [RuCl2(p-cymene)]2 and (1S,2R)-1-amino-2-indanol is a very efficient catalyst for the asymmetric transfer hydrogenation of (R)-N-(tert-butanesulfinyl)ketimines in isopropanol. By carefully removing all possible moisture from the reaction medium, chiral primary amines with very high optical purities (up to >99% ee) can be easily prepared in excellent yields by the diastereoselective reduction of the imines followed by removal of the sulfinyl group under mild acidic conditions. Reaction times of 1-4 h were needed to complete the reduction reactions when they were performed at 40 °C.  相似文献   

8.
A set of 20 novel [2.2]paracyclophane ketimines with planar and central chirality has been synthesized from enantiomerically pure and racemic 5-acyl-4-hydroxy[2.2]paracyclophane and alpha-branched chiral amines. Their X-ray structures were determined to elucidate the three-dimensional structures and the absolute configuration. The ketimines were used as catalysts in the asymmetric 1,2-addition reactions of diethylzinc with substituted benzaldehydes to furnish chiral alcohols in up to 95 % ee.  相似文献   

9.
Lauzon C  Charette AB 《Organic letters》2006,8(13):2743-2745
[reaction: see text] A copper-catalyzed asymmetric addition of diorganozinc reagents to N-phosphinoylimines has been developed for the synthesis of chiral alpha,alpha,alpha-trifluoromethylamines. The trifluoromethyl ketimines, generated in situ from the corresponding hemiaminals, led to the chiral amides in high yields (71-89%) and excellent enantiocontrol (91-99% ee).  相似文献   

10.
Because MC1220 is a promising microbicide with anti‐HIV‐1 activity, the possibility for asymmetric synthesis of its potential precursors is explored. Here, we investigate asymmetric reduction of the vinyl double bond of 6‐(1‐arylvinyl)pyrimidine derivatives to their corresponding ethylidene analogues. Catalysts with ligands bearing trivalent phosphorus ligating the soft metals rhodium(I), ruthenium(II), or iridium(I) are used for asymmetric reduction of the vinyl derivatives 5a – e . The enantioselective reduction reaches 92% ee and about 71% conversion for reduction of the 6‐(1‐(3,5‐dimethylphenyl)vinyl)pyrimidine derivative 5b using the asymmetric catalyst catASium M(R)Rh ( 7m ). However, for the more sterically hindered double bond in the corresponding 2,6‐difluorophenyl derivative 5e , the enantioselective reduction dropped to 30% ee and 14% conversion.  相似文献   

11.
《Tetrahedron: Asymmetry》2003,14(11):1463-1466
Oxime ethers of acetophenone, isopropyl methyl ketone, and tert-butyl methyl ketone were reduced to the corresponding hydroxylamine ethers of 45–94% ee with borane–oxazaborolidine 1 derived from (−)-norephedrine. A one-pot reduction of acetophenone oxime with 1 to 1-phenylethylhydroxylamine of 87% ee is described. The reduction of 6-methyl-2,3,4,5-tetrahydropyridine and N-methylimines of the above mentioned ketones with borane-B-methyloxazaborolidine adduct 2, derived from (−)-diphenylprolinol, gave the corresponding amines of 40–74% ee.  相似文献   

12.
Pd/bisphosphines complexes are highly effective catalysts for asymmetric hydrogenation of activated imines in trifluoroethanol. The asymmetric hydrogenation of N-diphenylphosphinyl ketimines 3 with Pd(CF3CO2)/(S)-SegPhos indicated 87-99% ee, and N-tosylimines 5 could gave 88-97% ee with Pd(CF3CO2)/(S)-SynPhos as a catalyst. Cyclic N-sulfonylimines 7 and 11 were hydrogenated to afford the useful chiral sultam derivatives in 79-93% ee, which are important organic synthetic intermediates and structural units of agricultural and pharmaceutical agents.  相似文献   

13.
The syntheses of the optically pure asymmetric hydroborating agents 1 (a, R = Ph; b, R = TMS) in both enantiomeric forms are reported. These reagents are effective for the hydroboration of cis-, trans- and trisubstituted alkenes. More significantly, they exhibit unprecedented levels of selectivity in the asymmetric hydroboration of 1,1-disubstituted alkenes (28-92% ee), a previously unanswered challenge in the nearly 50 year history of this reagent-controlled process. For example, the hydroboration of alpha-methylstyrene with 1a produces the corresponding alcohol 6f in 78% ee (cf., Ipc2BH, 5% ee). Suzuki coupling of the intermediate adducts 5 produces the nonracemic products 7 very effectively (50-84%) without loss of optical purity.  相似文献   

14.
不添加任何稳定剂,在碱性条件下制备了5%Ir/SiO2催化剂,并用于催化苯乙酮的不对称加氢反应中,详细考察了碱和手性修饰剂种类、氢气压力、反应温度、(1S,2S)-1,2-二苯基乙二胺((1S,2S)-DPEN)浓度对反应的影响.在优化反应条件下,5%Ir/SiO2催化剂表现出较好的反应活性和对映选择性.其中,苯乙酮不对称加氢反应的对映选择性达70%.该催化剂不需要任何稳定剂,制备方法简单,催化性能稳定,通过简单的离心分离即可循环使用.  相似文献   

15.
七十年代以前,旋光性高分子的研究主要着眼于聚合反应本身,即企图借助旋光性单体获得立体规整聚合物,或使用手性引发剂,Ziegler-Natta型催化剂等由潜手性单体聚合以得到旋光性高分子[1]。近十多年来,对于旋光性高分子的兴趣逐渐转到其可能的应用方面,如用做色谱法直接拆分的手性固定相及用于不对称合成的高分子化手性试剂或催化剂等。  相似文献   

16.
The direct coupling of oxazolines and N-heterocyclic carbenes leads to chelating C,N ancillary ligands for asymmetric catalysis that combine both an "anchor" unit and a stereodirecting element. Reacting various N-substituted imidazoles with 2-bromo-4(S)-tert-butyl- and 2-bromo-4(S)-isopropyloxazoline gave the imidazolium precursors of the stereodirecting ancillary ligands. A library of ten different ligand precursors was obtained by using this simple procedure (65-97 % yield). These protioligands were metalated in a subsequent step by reaction with [{Rh(mu-OtBu)(nbd)}2] (nbd=norbornadiene), generated in situ from KOtBu and [{RhCl(nbd)}2] giving the corresponding N-heterocyclic carbene complexes [RhBr(nbd)(oxazolinyl-carbene)] 4 a-j in good yields. X-ray diffraction studies of two of the rhodium complexes, 4 d and 4 j, established a distorted square-pyramidal coordination geometry with the bromo ligand occupying the apical position. The rhodium-carbene bond length was found to be 2.070(4) A (4 d) and 2.012(3) A (4 j). Complexes 4 a-j were treated with AgBF4 in dichloromethane, giving the active cationic square-planar catalysts for the hydrosilylation of ketones. As a reference reaction for the catalyst optimisation, the hydrosilylation of acetophenone with diphenylsilane was studied and the system optimised with respect to the counterion (BF(4) (-)), solvent (THF) and the silane reducing agent (diphenylsilane). The reaction product (1-phenylethanol) was obtained with the highest enantiomeric excess (ee) by carrying out the reaction at -60 degrees C, whilst the enantioselectivity drops upon going both to lower and higher temperatures. The observation that the temperature dependence of the ee values goes through a maximum indicated a change in the rate-determining step as the temperature is varied. The determination of the initial reaction rate in the hydrosilylation of acetophenone upon varying the catalyst (4 d) and substrate concentrations at -55 degrees C established a rate law for the initial conversion which is first-order in both substrates as well as the catalyst (Vi = k[4][PhCOMe][Ph2SiH2]). The catalytic system derived from complex 4 d was found to afford high yields and good enantioselectivities in the reduction of various aryl alkyl ketones (acetophenone: 92 % isolated yield and 90 % ee, 2-naphtyl methyl ketone: 99 % yield, 91 % ee). The selectivity for the reduction of prochiral dialkyl ketones is comparable or even superior to the best previously reported for prochiral nonaromatic ketones; whereas cyclopropyl methyl ketone is hydrosilylated with an enantioselectivity of 81 % ee, the increase of the steric demand of one of the alkyl groups leads to improved ee's, reaching 95 % ee in the case of tert-butyl methyl ketone. Linear chain n-alkyl methyl ketones, which are particularly challenging substrates, are reduced in good asymmetric induction, such as 2-octanone (79 % ee) and even 2-butanone (65 % ee).  相似文献   

17.
2,3-Bis(dimenthylphosphino)maleic anhydride and also 2,3-bis(dimenthylphosphino)maleimide derivatives have been prepared from 2,3-dichloromaleic anhydride, 2,3-dichloro-N-phenylmaleimide and 2,3-dichloro-N-methylmaleimide, respectively, and dimenthyl(trimethylsilyl)phosphine. These compounds have been used as ligands for Rh complexes in the asymmetric hydrogenation and hydrosilylation. Ni and Pd complexes of these ligands were tested in the Grignard cross-coupling reaction.

The hydrogenation of -acetamido cinnamic acid gave 70% enantiomeric excess (ee) and hydrogenation of acetophenone up to 47% ee. Hydrosilylation of acetophenone led to 42% ee.

Attempts to asymmetric cross-coupling reactions resulted in very low enantiomeric excess.  相似文献   


18.
 Eight O-substituted 1,2-diols and one O,N-substituted 1,2-aminoalcohol derived from 2-alkoxyoctahydro-7,8,8-trimethyl-4,7-methanobenzofurans via a [1,2]-Witting rearrangement and subsequent substitution were synthesized and tested as additives for the enantioselective addition of butyllithium and butylmagnesium chloride to benzaldehyde and for the reduction of acetophenone with lithium aluminum hydride. The selectivity of the reactions was determined by GC of the obtained 1-phenyl-1-pentanol and 1-phenylethanol on a chiral phase. Best results with regard to selectivity (52% ee and 94% ee, resp.) were achieved in the formation of 1-phenyl-1-pentanol by addition of the substituted 1,2-aminoalcohol to the organometallic reagent and in the reduction of acetophenone using an α-alkoxyalcohol (62%ee).  相似文献   

19.
Summary.  Eight O-substituted 1,2-diols and one O,N-substituted 1,2-aminoalcohol derived from 2-alkoxyoctahydro-7,8,8-trimethyl-4,7-methanobenzofurans via a [1,2]-Witting rearrangement and subsequent substitution were synthesized and tested as additives for the enantioselective addition of butyllithium and butylmagnesium chloride to benzaldehyde and for the reduction of acetophenone with lithium aluminum hydride. The selectivity of the reactions was determined by GC of the obtained 1-phenyl-1-pentanol and 1-phenylethanol on a chiral phase. Best results with regard to selectivity (52% ee and 94% ee, resp.) were achieved in the formation of 1-phenyl-1-pentanol by addition of the substituted 1,2-aminoalcohol to the organometallic reagent and in the reduction of acetophenone using an α-alkoxyalcohol (62%ee). Received March 10, 2000. Accepted March 23, 2000  相似文献   

20.
Chiral Cu(I)-bisoxazoline- and Cu(I)-PN-complexes were found to catalyze the intermolecular insertion of alpha-diazo compounds into N-H bonds. The insertion reactions proceed with enantioselectivities of up to 28% ee for the different alpha-diazo acetates into one of the N-H bonds of different amines. Analogous chiral Ag(I) complexes were found to give higher enantioselectivities of up to 48% ee, however, lower yields were obtained. There are indications, that the Ag(I)-mediated reactions follow a different reaction mechanism compared to the Cu(I)-catalyzed insertions. It is demonstrated that different alpha-amino acid derivatives can be obtained via this approach in good yields and with low to moderate enantioselectivities. However, the results obtained are the highest asymmetric inductions obtained for an intermolecular N-H insertion via chiral carbene complexes or chiral Lewis acid catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号