首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We first introduce the notion of positive linear Volterra-Stieltjes differential systems. Then, we give some characterizations of positive systems. An explicit criterion and a Perron-Frobenius type theorem for positive linear Volterra-Stieltjes differential systems are given. Next, we offer a new criterion for uniformly asymptotic stability of positive systems. Finally, we study stability radii of positive linear Volterra-Stieltjes differential systems. It is proved that complex, real and positive stability radius of positive linear Volterra-Stieltjes differential systems under structured perturbations coincide and can be computed by an explicit formula. The obtained results in this paper include ones established recently for positive linear Volterra integro-differential systems [36] and for positive linear functional differential systems [32]-[35] as particular cases. Moreover, to the best of our knowledge, most of them are new. The first author is supported by the Alexander von Humboldt Foundation.  相似文献   

2.
We study stability radii of higher order linear difference systems under multi-perturbations. A formula for complex stability radius of higher order linear difference systems under multi-perturbations is given. Then, for the class of positive systems, we prove that the complex stability radius and real stability radius of the system under multi-perturbations coincide and they are computed via a simple formula. These are extensions of corresponding results of Hinrichsen and Son, Hinrichsen et al., Ngoc and Son, and Pappas and Hinrichsen. An example is given to illustrate the obtained results.  相似文献   

3.
In this paper, we present a unifying approach to the problems of computing of stability radii of positive linear systems. First, we study stability radii of linear time-invariant parameter-varying differential systems. A formula for the complex stability radius under multi perturbations is given. Then, under hypotheses of positivity of the system matrices, we prove that the complex, real and positive stability radii of the system under multi perturbations (or affine perturbations) coincide and they are computed via simple formulae. As applications, we consider problems of computing of (strong) stability radii of linear time-invariant time-delay differential systems and computing of stability radii of positive linear functional differential equations under multi perturbations and affine perturbations. We show that for a class of positive linear time-delay differential systems, the stability radii of the system under multi perturbations (or affine perturbations) are equal to the strong stability radii. Next, we prove that the stability radii of a positive linear functional differential equation under multi perturbations (or affine perturbations) are equal to those of the associated linear time-invariant parameter-varying differential system. In particular, we get back some explicit formulas for these stability radii which are given recently in [P.H.A. Ngoc, Strong stability radii of positive linear time-delay systems, Internat. J. Robust Nonlinear Control 15 (2005) 459-472; P.H.A. Ngoc, N.K. Son, Stability radii of positive linear functional differential equations under multi perturbations, SIAM J. Control Optim. 43 (2005) 2278-2295]. Finally, we give two examples to illustrate the obtained results.  相似文献   

4.
In this paper we study stability radii of positive higher order difference systems under fractional perturbations and affine perturbations of the coefficient matrices. It is shown that real and complex stability radii coincide and can be computed by a simple formula. Finally, a simple example is given to illustrate the obtained results.  相似文献   

5.
This paper extends the notion of generalized joint spectral radius with exponents, originally defined for a finite set of matrices, to probability distributions. We show that, under a certain invariance condition, the radius is calculated as the spectral radius of a matrix that can be easily computed, extending the classical counterpart. Using this result we investigate the mean stability of switching systems. In particular we establish the equivalence of mean square stability, simultaneous contractibility in square mean, and the existence of a quadratic Lyapunov function. Also the stabilization of positive switching systems is studied. Numerical examples are given to illustrate the results.  相似文献   

6.
By a novel approach, we get explicit robust stability bounds for positive linear differential systems subject to time-varying multi-perturbations and time-varying affine perturbations. Our approach is based on the celebrated Perron-Frobenius theorem and ideas of the comparison principle. An example is given to illustrate the obtained results.  相似文献   

7.
We consider a linear time-invariant homogeneous system of first-order ordinary differential equations with a noninvertible matrix multiplying the derivative of the unknown vector function and with perturbed coefficients. We introduce a class of perturbations of the coefficient matrices of the system and determine conditions on the perturbations of this class under which they do not affect the internal structure of the system. We obtain sufficient conditions for the robust stability of the system under such perturbations.  相似文献   

8.
An eigenvalue perturbation theory under rank-one perturbations is developed for classes of real matrices that are symmetric with respect to a non-degenerate bilinear form, or Hamiltonian with respect to a non-degenerate skew-symmetric form. In contrast to the case of complex matrices, the sign characteristic is a crucial feature of matrices in these classes. The behaviour of the sign characteristic under generic rank-one perturbations is analyzed in each of these two classes of matrices. Partial results are presented, but some questions remain open. Applications include boundedness and robust boundedness for solutions of structured systems of linear differential equations with respect to general perturbations as well as with respect to structured rank perturbations of the coefficients.  相似文献   

9.
We study the stability under perturbations for delay difference equations in Banach spaces. Namely, we establish the (nonuniform) stability of linear nonuniform exponential contractions under sufficiently small perturbations. We also obtain a stable manifold theorem for perturbations of linear delay difference equations admitting a nonuniform exponential dichotomy, and show that the stable manifolds are Lipschitz in the perturbation.  相似文献   

10.
In the perturbation theory of linear matrix difference equations, it is well known that the theory of finite and infinite elementary divisors of regular matrix pencils is complicated by the fact that arbitrarily small perturbations of the pencil can cause them to disappear. In this paper, the perturbation theory of complex Weierstrass canonical form for regular matrix pencils is investigated. By using matrix pencil theory and the Weierstrass canonical form of the pencil we obtain bounds for the finite elementary divisors of a perturbed pencil. Moreover we study robust stability of a class of linear matrix difference equations (of first and higher order) whose coefficients are square constant matrices.  相似文献   

11.
For linear impulsive differential equations, we give a simple criterion for the existence of a nonuniform exponential dichotomy, which includes uniform exponential dichotomies as a very special case. For this we introduce the notion of Lyapunov regularity for a linear impulsive differential equation, in terms of the so-called regularity coefficient. The theory is then used to show that if the Lyapunov exponents are nonzero, then there is a nonuniform exponential behavior, which can be expressed in terms of the Lyapunov exponents of the differential equation and of the regularity coefficient. We also consider the particular case of nonuniform exponential contractions when there are only negative Lyapunov exponents. Having this relation in mind, it is also of interest to provide alternative characterizations of Lyapunov regularity, and particularly to obtain sharp lower and upper bound for the regularity coefficient. In particular, we obtain bounds expressed in terms of the matrices defining the impulsive linear system, and we obtain characterizations in terms of the exponential growth rate of volumes. In addition we establish the persistence of the stability of a linear impulsive differential equation under sufficiently small nonlinear perturbations.  相似文献   

12.
In this paper the problem of exponential stability of the zero state equilibrium of a discrete-time time-varying linear equation described by a sequence of linear positive operators acting on an ordered finite dimensional Hilbert space is investigated. The class of linear equations considered in this paper contains as particular cases linear equations described by Lyapunov operators or symmetric Stein operators as well as nonsymmetric Stein operators. Such equations occur in connection with the problem of mean square exponential stability for a class of difference stochastic equations affected by independent random perturbations and Markovian jumping as well us in connection with some iterative procedures which allow us to compute global solutions of discrete time generalized symmetric or nonsymmetric Riccati equations. The exponential stability is characterized in terms of the existence of some globally defined and bounded solutions of some suitable backward affine equations (inequalities) or forward affine equations (inequalities).  相似文献   

13.
We study positive linear Volterra integro-differential equations in Banach lattices. A characterization of positive equations is given. Furthermore, an explicit spectral criterion for uniformly asymptotic stability of positive equations is presented. Finally, we deal with problems of robust stability of positive systems under structured perturbations. Some explicit stability bounds with respect to these perturbations are given.  相似文献   

14.
This paper studies a class of perturbations of a game matrix that alters each row by a different amount. We find that completely mixed optimal strategies are stable under these perturbations provided the norm of the vector of additive amounts is sufficiently small. Using this concept we give a new characterization of completely mixed grames. We also obtain a sensitivity result for a class of perturbations of the technological coefficient matrix of positive linear programs. The stability of an optimal strategy holds throughout at least a spherical neighborhood of the zero perturbation. We give a computational formula and equivalent programming formulations for the radius of this neighborhood.  相似文献   

15.
General linear functional differential equations with infinite delay are considered. We first give an explicit criterion for positivity of the solution semigroup of linear functional differential equations with infinite delay and then a Perron‐Frobenius type theorem for positive equations. Next, a novel criterion for the exponential asymptotic stability of positive equations is presented. Furthermore, two sufficient conditions for the exponential asymptotic stability of positive equations subjected to structured perturbations and affine perturbations are provided. Finally, we applied the obtained results to problems of the exponential asymptotic stability of Volterra integrodifferential equations. To the best of our knowledge, most of the results of this paper are new.  相似文献   

16.
This paper address the asymptotical stability of neutral systems with nonlinear perturbations. Some novel delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs). The resulting delay-dependent stability criteria are less conservative than the previous ones, owing to the introduction of free-weighting matrices, based on a class of novel augment Lyapunov functionals. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.  相似文献   

17.
This paper considers the robust stability for a class of linear systems with interval time-varying delay and nonlinear perturbations. A Lyapunov-Krasovskii functional, which takes the range information of the time-varying delay into account, is proposed to analyze the stability. A new approach is introduced for estimating the upper bound on the time derivative of the Lyapunov-Krasovskii functional. On the basis of the estimation and by utilizing free-weighting matrices, new delay-range-dependent stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness of the proposed approach.  相似文献   

18.
Summary Part I of this work deals with the forward error analysis of Gaussian elimination for general linear algebraic systems. The error analysis is based on a linearization method which determines first order approximations of the absolute errors exactly. Superposition and cancellation of error effects, structure and sparsity of the coefficient matrices are completely taken into account by this method. The most important results of the paper are new condition numbers and associated optimal component-wise error and residual estimates for the solutions of linear algebraic systems under data perturbations and perturbations by rounding erros in the arithmetic floating-point operations. The estimates do not use vector or matrix norms. The relative data and rounding condition numbers as well as the associated backward and residual stability constants are scaling-invariant. The condition numbers can be computed approximately from the input data, the intermediate results, and the solution of the linear system. Numerical examples show that by these means realistic bounds of the errors and the residuals of approximate solutions can be obtained. Using the forward error analysis, also typical results of backward error analysis are deduced. Stability theorems and a priori error estimates for special classes of linear systems are proved in Part II of this work.  相似文献   

19.
This paper is concerned with the robust stability for linear time-varying differential-algebraic equations. We consider the systems under the effect of uncertain dynamic perturbations. A formula of the structured stability radius is obtained. The result is an extension of a previous result for time-varying ordinary differential equations proven by Birgit Jacob [B. Jacob, A formula for the stability radius of time-varying systems, J. Differential Equations 142 (1998) 167-187].  相似文献   

20.
Robustness of stability of linear time-invariant systems using the relationship between the structured complex stability radius and a parametrized algebraic Riccati equation is analysed. Our approach is based on the observation that the algebraic Riccati equation can be viewed as a bifurcation problem. It is proved that the stability radius is, under certain assumptions, associated with a turning point of the bifurcation problem given by the parametrized algebraic Riccati equation. As a byproduct, the stability radius can be computed via path following. Some numerical examples are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号