首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [LCo(III)NCM(II)(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L(14)) or triamine-dithiaether (L(14S)) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [L(14)Co(III)NCFe(II)(CN)(5)](-) and [L(14S)Co(III)NCFe(II)(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [L(14)Co(III)NCRu(II)(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [L(14)Co(III)NCFe(II)(CN)(5)](-) and [L(14S)Co(III)NCFe(II)(CN)(5)](-) at room temperature enabled the lifetimes of their Co(II)-Fe(III) MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.  相似文献   

2.
We report the synthesis, characterization, and spectroscopic properties of a family of trinuclear cyano-bridged mixed-valent compounds, trans-[Ru(II)L(4)[NCFe(III)(CN)(5)](2)](4-), trans-[Ru(II)L(4)[CNFe(III)(CN)(5)](2)](4-), and cis-[Ru(II)(bpy)(2)[NCFe(III)(CN)(5)](2)](4-) (L = pyridine, 4-tert-butylpyridine, and 4-methoxypyridine). Tetraphenylphosphonium salts of complexes trans-[Ru(II)L(4)[NCFe(III)(CN)(5)](2)](4-) (L = pyridine and 4-tert-butylpyridine) crystallize in the space groups C2 and P2(1)/c, respectively, and show a linear arrangement of the metal units and an almost completely eclipsed configuration of the equatorial ligands. An intense band (epsilon approximately 2000-9000 M(-1) cm(-1)) is observed for all of the compounds in the NIR region of the spectrum, not present in the separated building blocks, and strongly solvent dependent. We assign it as a metal-to-metal charge transfer (MMCT) from the Ru(II) to the terminal Fe(III) moieties in the context of a simplified three-center model. The electrochemistry measurements reveal a splitting of the redox waves for the reduction of the iron centers for some of the complexes with a trans configuration between the metal units, ranging from 100 to 260 mV, depending on the substituting pyridine ligand and the solvent, suggesting long-range metal-metal interactions. These interactions are rationalized in terms of the energy matching between the pi-symmetry orbitals of the metals and the cyanide bridge. The one- and two-electron reduced species derived from compounds trans-[Ru(II)L(4)[NCFe(III)(CN)(5)](2)](4-,5-,6-) were characterized in methanolic solution. The mixed-valent Fe(II)-Ru(II)-Fe(III) system exhibits an intense red shifted band in the NIR region of the spectrum, arising from the superposition of MMCT bands from the central Ru(II) to the terminal Fe(III) fragments and from the 1 nm distant Fe(II) to Fe(III) centers.  相似文献   

3.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

4.
The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co(III)-Fe(II)-Co(III) compounds derived from known dinuclear [[L(n)Co(III)(mu-NC)]Fe(II)(CN)(5)](-) complexes (L(n)() = N(5) or N(3)S(2) n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and (13)C NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{L(n)Co(III)(mu-NC)](2)Fe(II)(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe(III/II) redox potential upon addition of a tripositively charged [Co(III)L(n)] moiety. The Co(III/II) redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe(II)-CN-Co(III) units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.  相似文献   

5.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

6.
The interaction of NO with [Fe(CN)(5)H(2)O](3)(-) (generated by aquation of the corresponding ammine complex) to produce [Fe(CN)(5)NO](3)(-) was studied by UV-vis spectrophotometry. The reaction product is the well characterized nitrosyl complex, described as a low-spin Fe(II) bound to the NO radical. The experiments were performed in the pH range 4-10, at different concentrations of NO, temperatures and pressures. The rate law was first-order in each of the reactants, with the specific complex-formation rate constant, k(f)( )()= 250 +/- 10 M(-)(1) s(-)(1) (25.4 degrees C, I = 0.1 M, pH 7.0), DeltaH(f)() = 70 +/- 1 kJ mol(-)(1), DeltaS(f)() = +34 +/- 4 J K(-)(1) mol(-)(1), and DeltaV(f)() = +17.4 +/- 0.3 cm(3) mol(-)(1). These values support a dissociative mechanism, with rate-controlling dissociation of coordinated water, and subsequent fast coordination of NO. The complex-formation process depends on pH, indicating that the initial product [Fe(CN)(5)NO](3)(-) is unstable, with a faster decomposition rate at lower pH. The decomposition process is associated with release of cyanide, further reaction of NO with [Fe(CN)(4)NO](2)(-), and formation of nitroprusside and other unknown products. The decomposition can be prevented by addition of free cyanide to the solutions, enabling a study of the dissociation process of NO from [Fe(CN)(5)NO](3)(-). Cyanide also acts as a scavenger for the [Fe(CN)(5)](3)(-) intermediate, giving [Fe(CN)(6)](4)(-) as a final product. From the first-order behavior, the dissociation rate constant was obtained as k(d) = (1.58 +/- 0.06) x 10(-)(5) s(-)(1) at 25.0 degrees C, I = 0.1 M, and pH 10.2. Activation parameters were found to be DeltaH(d)() = 106.4 +/- 0.8 kJ mol(-)(1), DeltaS(d)() = +20 +/- 2 J K(-)(1) mol(-)(1), and DeltaV(d)() = +7.1 +/- 0.2 cm(3) mol(-)(1), which are all in line with a dissociative mechanism. The low value of k(d) as compared to values for the release of other ligands L from [Fe(II)(CN)(5)L](n)()(-) suggests a moderate to strong sigma-pi interaction of NO with the iron(II) center. It is concluded that the release of NO from nitroprusside in biological media does not originate from [Fe(CN)(5)NO](3)(-) produced on reduction of nitroprusside but probably proceeds through the release of cyanide and further reactions of the [Fe(CN)(4)NO](2)(-) ion.  相似文献   

7.
The metal-to-metal charge transfer (MMCT) transitions of a series of Class II mixed valence dinuclear complexes bearing cyano bridging ligands may be varied systematically by variations to either the hexacyanometallate(II) donor or Co(III) acceptor moieties. Specifically, the new dinuclear species trans-[L(14S)CoNCFe(CN)(5)](-)(L(14S)= 6-methyl-1,11-diaza-4,8-dithia-cyclotetradecane-6-amine) and trans-[L(14)CoNCRu(CN)(5)](-)(L(14)= 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine) have been prepared and their spectroscopic and electrochemical properties are compared with the relative trans-[L(14)CoNCFe(CN)(5)](-). The crystal structures of Na(trans-[L(14S)CoNCFe(CN)(5)]).51/2H(2)O.1/2EtOH, Na(trans-[L(14)CoNCRu(CN)(5)]).3H(2)O and Na(trans-[L(14)CoNCRu(CN)(5)]).8H(2)O are also reported. The ensuing changes to the MMCT energy have been examined within the framework of Hush theory, and it was found that the free energy change between the redox isomers was the dominant effect in altering the energy of the MMCT transition.  相似文献   

8.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

9.
We explore the molecular properties of adsorbates that dramatically affect growth kinetics and morphology of the [100] face of archerite, also known as potassium dihydrogen phosphate (KH(2)PO(4) or KDP). Aqueous complexes of Al(III), Fe(III), and Cr(III) are known to affect KDP growth, albeit the actual step-pinning complex(es) is unknown. Using in situ atomic force microscopy (AFM), we measured changes in the growth rates of the [100] face of KDP with supersaturation in the presence of trace amounts of [Co(NH(3))(6)](3+), [Fe(CN)(6)](3-), eta(1)-[Co(NH(3))(5)HPO(4)](+), eta(2)-[Co(NH(3))(4)HPO(4)](+), eta(2)-[Co(NH(3))(4)P(2)O(7)H(2)](+), and [Rh(H(2)PO(4))(2)(H(2)O)(4)](+). Unlike in experiments using trivalent-metals, these complexes do not change stoichiometry or structure on the timescale of step motion, so that the actual molecular interactions that affect growth can be studied. Step velocity and morphology on the [100] face are unaffected by outer-sphere coordination complexes of either charge. Surprisingly, inner-sphere phosphatoammine complexes do not affect growth rates regardless of how the phosphate group is coordinated to the metal. However, doping the growth solution with [Rh(H(2)PO(4))(2)(H(2)O)(4)](+) results in profound step pinning, matching the behavior of KDP surfaces grown in the presence of Rh(III) after an equilibration period. Not only is an inner-sphere phosphate group needed to dock a trivalent metal to the step edge, but compatible hydrogen bonding of the remainder of the inner-sphere ligands with the bulk lattice is also essential.  相似文献   

10.
The kinetics and mechanism of the reaction between nitric oxide and aquapentacyanoferrate(III) were studied in detail. Pentacyanonitrosylferrate (nitroprusside, NP) was produced quantitatively in a pseudo-first-order process. The complex-formation rate constant was found to be 0.252 +/- 0.004 M(-1) s(-1) at 25.5 degrees C, pH 3.0 (HClO(4)), and I = 0.1 M (NaClO(4)), for which the activation parameters are DeltaH++ = 52 +/- 1 kJ mol(-1), DeltaS++ = -82 +/- 4 J K(-1) mol(-1), and DeltaV++ = -13.9 + 0.5 cm(3) mol(-1). These data disagree with earlier studies on complex-formation reactions of aquapentacyanoferrate(III), for which a dissociative interchange (I(d)) mechanism was suggested. The aquapentacyanoferrate(II) ion was detected as a reactive intermediate in the reaction of aquapentacyanoferrate(III) with NO, by using pyrazine and thiocyanate as scavengers for this intermediate. In addition, the reactions of other [Fe(III)(CN)(5)L](n-) complexes (L = NCS(-), py, NO(2)(-), and CN(-)) with NO were studied. These experiments also pointed to the formation of Fe(II) species as intermediates. It is proposed that aquapentacyanoferrate(III) is reduced by NO to the corresponding Fe(II) complex through a rate-determining outer-sphere electron-transfer reaction controlling the overall processes. The Fe(II) complex rapidly reacts with nitrite producing [Fe(II)(CN)(5)NO(2)](4)(-), followed by the fast and irreversible conversion to NP.  相似文献   

11.
To investigate the factors influencing the formation of intermolecular Au···NC interactions between [Au(CN)(4)](-) units, a series of [cation](n+)[Au(CN)(4)](n) double salts was synthesized, structurally characterized and probed by IR and (15)N{(1)H} CP-MAS NMR spectroscopy. Thus, [(n)Bu(4)N][Au(CN)(4)], [AsPh(4)][Au(CN)(4)], [N(PPh(3))(2)][Au(CN)(4)], [Co(1,10-phenanthroline)(3)][Au(CN)(4)](2), and [Mn(2,2';6',2'-terpyridine)(2)][Au(CN)(4)](2) show [Au(CN)(4)](-) anions that are well-separated from one another; no Au-Au or Au···NC interactions are present. trans-[Co(1,2-diaminoethane)(2)Cl(2)][Au(CN)(4)] forms a supramolecular structure, where trans-[Co(en)(2)Cl(2)](+) and [Au(CN)(4)](-) ions are found in separate layers connected by Au-CN···H-N hydrogen-bonding; weak Au···NC coordinate bonds complete octahedral Au(III) centers, and support a 2-D (4,4) network motif of [Au(CN)(4)](-)-units. A similar structure-type is formed by [Co(NH(3))(6)][Au(CN)(4)](3)·(H(2)O)(4). In [Ni(1,2-diaminoethane)(3)][Au(CN)(4)](2), intermolecular Au···NC interactions facilitate formation of 1-D chains of [Au(CN)(4)](-) anions in the supramolecular structure, which are separated from one another by [Ni(en)(3)](2+) cations. In [1,4-diazabicyclo[2.2.2]octane-H][Au(CN)(4)], the monoprotonated amine cation forms a hydrogen-bond to the [Au(CN)(4)](-) unit on one side, while coordinating to the axial sites of the gold(III) center through the unprotonated amine on the other, thereby generating a 2-D (4,4) net of cations and anions; an additional, uncoordinated [Au(CN)(4)](-)-unit lies in the central space of each grid. This body of structural data indicates that cations with hydrogen-bonding groups can induce intermolecular Au···NC interactions, while the cationic charge, shape, size, and aromaticity have little effect. While the ν(CN) values are poor indicators of the presence or absence of N-cyano bridging between [Au(CN)(4)](-)-units (partly because of the very low intensity of the observed bands), (15)N{(1)H} CP-MAS NMR reveals well-defined, ordered cyanide groups in the six diamagnetic compounds with chemical shifts between 250 and 275 ppm; the resonances between 260 and 275 ppm can be assigned to C-bound terminal ligands, while those subject to CN···H-N bonding resonate lower, around 250-257 ppm. The (15)N chemical shift also correlates with the intermolecular Au···N distances: the shortest Au-N distances also shift the (15)N peak to lower frequency. This provides a real, spectroscopically measurable electronic effect associated with the crystallographic observation of intermolecular Au···NC interactions, thereby lending support for their viability.  相似文献   

12.
Kofod P  Harris P 《Inorganic chemistry》2004,43(8):2680-2688
The (13)C chemical shifts of methylcobalt(III) compounds with saturated amine ligands in cis positions to the methyl group and a monodentate ligand, L = CN(-), NH(3), NO(2)(-), N(3)(-), H(2)O, or OH(-), in the trans position are reported. The amine ligands used, 1,2-ethanediamine (en), 1,3-propanediamine (tn), N,N'-bis(2-aminoethyl)-1,3-propanediamine (2,3,2-tet), N,N'-bis(3-aminopropyl)-1,2-ethanediamine (3,2,3-tet), and 1,4,8,11-tetraazacyclotetradecane (cyclam), all exert an apparent cis influence on the (13)C resonance signal of the coordinated methyl group. In the trans-[Co(en)(2)(CH(3))(L)](n+) series the (15)N resonance frequency of the coordinated en has also been measured. The influence of L on the en (15)N chemical shifts is reverse the influence on the methyl (13)C chemical shifts except in the case of L = NO(2)(-), which affects a further deshielding of the amine nitrogen nucleus. The methyl (1)J(CH) coupling constants in the trans-[Co(en)(2)(CH(3))(L)](n+) series range from 128.09 Hz (L = CN(-)) to 134.11 Hz (L = H(2)O). The crystal structures of trans-[Co(en)(2)(CH(3))(ClZnCl(3))], trans-[Co(3,2,3-tet)(CH(3))(N(3))]ClO(4), trans,trans-[(CH(3))(en)(2)Co(CN)Co(en)(2)(CH(3))](PF(6))(3)(CH(3)CN), and cis-[Co(en)(2)(CH(3))(NH(3))]ZnCl(4) were determined from low-temperature X-ray diffraction data.  相似文献   

13.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

14.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

15.
Shin DM  Lee IS  Chung YK 《Inorganic chemistry》2003,42(26):8838-8846
Self-assemblies of rigid angular ligands with 120 degrees molecular angle and metal centers have been investigated with the aim of achieving the rational construction and modification of coordination polymer structures. The reactions of Co(NCS)(2) with 1,3-bis(trans-4-styrylpyridyl)benzene (L(1)()), 2,6-bis(trans-4-styrylpyridyl)pyridine (L(2)()), 1,3-bis(trans-4-styrylpyrimidyl)benzene (L(3)()), and 1,3-bis(trans-4-styrylquinoly)benzene (L(4)()) afford complexes [Co(L(1)())(2)(NCS)(2)]( infinity ) (1), [Co(L(2)())(2)(NCS)(2)]( infinity ) (2), Co(L(3)())(2)(NCS)(2)(CH(3)OH)(2) (3), and [Co(L(4)())(NCS)(2)]( infinity ) (4), respectively. The resulting complexes exhibit open framework, stairlike hydrogen-bonded chain and single-stranded helical coil structures, which are controlled by the variation of the geometry around the coordination site in ligands. Moreover, the coordination of L(1)() and L(2)() to Mn(hfac)(2) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate) yields single-stranded helical coordination polymers of [Mn(L(1)())(hfac)(2)]( infinity ) (5) and [Mn(L(2)())(hfac)(2)]( infinity ) (6), respectively.  相似文献   

16.
We report the study of binuclear Ln(III) chelates of OHEC (OHEC=octaazacyclohexacosane-1,4,7,10,14,17,20,23-octaacetate). The interconversion between two isomeric forms, which occurs in aqueous solution, has been studied by NMR, UV/Vis, EPR, and luminescence spectroscopy, as well as by classical molecular dynamics (MD) simulations. For the first time we have characterized an isomerization equilibrium for a Ln(III) polyaminocarboxylate complex (Ln(III)=Y, Eu, Gd and Tb) in which the metal centre changes its coordination number from nine to eight, such that: [Ln(2)(ohec)(H(2)O)(2)](2-) r<==>[Ln(2)(ohec)](2-)+2 H(2)O. The variable temperature and pressure NMR measurements conducted on this isomerization reaction give the following thermodynamic parameters for Eu(III): K(298)=0.42+/-0.01, DeltaH(0)=+4.0+/-0.2 kJ mol(-1), DeltaS(0)=+6.1+/-0.5 J K(-1) mol(-1) and DeltaV(0)=+3.2+/-0.2 cm(3) mol(-1). The isomerization is slow and the corresponding kinetic parameters obtained by NMR spectroscopy are: k(298)(is)=73.0+/-0.5 s(-1), DeltaH++(is)=75.3+/-1.9 kJ mol(-1), DeltaS++(is)= +43.1+/-5.8 J K(-1) mol(-1) and DeltaV++(is)=+7.9+/-0.7 cm(3) mol(-1). Variable temperature and pressure (17)O NMR studies have shown that water exchange in [Gd(2)(ohec)(H(2)O)(2)](2-) is slow, k(298)(ex)=(0.40+/-0.02)x10(6) s(-1), and that it proceeds through a dissociative interchange I(d) mechanism, DeltaV( not equal )=+7.3+/-0.3 cm(3) mol(-1). The anisotropy of this oblong binuclear complex has been highlighted by MD simulation calculations of different rotational correlation times. The rotational correlation time directed on the Gd-Gd axis is 24 % longer than those based on the axes orthogonal to the Gd-Gd axis. The relaxivity of this binuclear complex has been found to be low, since 1) only [Gd(2)(ohec)(H(2)O)(2)](2-), which constitutes 70 % of the binuclear complex, contributes to the inner-sphere relaxivity and 2) the anisotropy of the complex prevents water molecules from having complete access to both Gd(III) cages; this decreases the outer-sphere relaxivity. Moreover, EPR measurements for the Gd(III) and for the mixed Gd(III)/Y(III) binuclear complexes have clearly shown that the two Gd(III) centres interact intramolecularly; this enhances the electronic relaxation of the Gd(III) electron spins.  相似文献   

17.
Reported here are self-exchange reactions between iron 2,2'-bi(tetrahydro)pyrimidine (H(2)bip) complexes and between cobalt 2,2'-biimidazoline (H(2)bim) complexes. The (1)H NMR resonances of [Fe(II)(H(2)bip)(3)](2+) are broadened upon addition of [Fe(III)(H(2)bip)(3)](3+), indicating that electron self-exchange occurs with k(Fe,e)(-) = (1.1 +/- 0.2) x 10(5) M(-1) s(-1) at 298 K in CD(3)CN. Similar studies of [Fe(II)(H(2)bip)(3)](2+) plus [Fe(III)(Hbip)(H(2)bip)(2)](2+) indicate that hydrogen-atom self-exchange (proton-coupled electron transfer) occurs with k(Fe,H.) = (1.1 +/- 0.2) x 10(4) M(-1) s(-1) under the same conditions. Both self-exchange reactions are faster at lower temperatures, showing small negative enthalpies of activation: DeltaH++(e(-)) = -2.1 +/- 0.5 kcal mol(-1) (288-320 K) and DeltaH++(H.) = -1.5 +/- 0.5 kcal mol(-1) (260-300 K). This behavior is concluded to be due to the faster reaction of the low-spin states of the iron complexes, which are depopulated as the temperature is raised. Below about 290 K, rate constants for electron self-exchange show the more normal decrease with temperature. There is a modest kinetic isotope effect on H-atom self-exchange of 1.6 +/- 0.5 at 298 K that is close to that seen previously for the fully high-spin iron biimidazoline complexes.(12) The difference in the measured activation parameters, E(a)(D) - E(a)(H), is -1.2 +/- 0.8 kcal mol(-1), appears to be inconsistent with a semiclassical view of the isotope effect, and suggests extensive tunneling. Reactions of [Co(H(2)bim)(3)](2+)-d(24) with [Co(H(2)bim)(3)](3+) or [Co(Hbim)(H(2)bim)(2)](2+) occur with scrambling of ligands indicating inner-sphere processes. The self-exchange rate constant for outer-sphere electron transfer between [Co(H(2)bim)(3)](2+) and [Co(H(2)bim)(3)](3+) is estimated to be 10(-)(6) M(-1) s(-1) by application of the Marcus cross relation. Similar application of the cross relation to H-atom transfer reactions indicates that self-exchange between [Co(H(2)bim)(3)](2+) and [Co(Hbim)(H(2)bim)(2)](2+) is also slow, < or =10(-3) M(-1) s(-1). The slow self-exchange rates for the cobalt complexes are apparently due to their interconverting high-spin [Co(II)(H(2)bim)(3)](2+) with low-spin Co(III) derivatives.  相似文献   

18.
Metal-dioxygen adducts are key intermediates detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. In this study, mononuclear cobalt(III)-peroxo complexes bearing tetraazamacrocyclic ligands, [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+), were synthesized by reacting [Co(12-TMC)(CH(3)CN)](2+) and [Co(13-TMC)(CH(3)CN)](2+), respectively, with H(2)O(2) in the presence of triethylamine. The mononuclear cobalt(III)-peroxo intermediates were isolated and characterized by various spectroscopic techniques and X-ray crystallography, and the structural and spectroscopic characterization demonstrated unambiguously that the peroxo ligand is bound in a side-on η(2) fashion. The O-O bond stretching frequency of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) was determined to be 902 cm(-1) by resonance Raman spectroscopy. The structural properties of the CoO(2) core in both complexes are nearly identical; the O-O bond distances of [Co(12-TMC)(O(2))](+) and [Co(13-TMC)(O(2))](+) were 1.4389(17) ? and 1.438(6) ?, respectively. The cobalt(III)-peroxo complexes showed reactivities in the oxidation of aldehydes and O(2)-transfer reactions. In the aldehyde oxidation reactions, the nucleophilic reactivity of the cobalt-peroxo complexes was significantly dependent on the ring size of the macrocyclic ligands, with the reactivity of [Co(13-TMC)(O(2))](+) > [Co(12-TMC)(O(2))](+). In the O(2)-transfer reactions, the cobalt(III)-peroxo complexes transferred the bound peroxo group to a manganese(II) complex, affording the corresponding cobalt(II) and manganese(III)-peroxo complexes. The reactivity of the cobalt-peroxo complexes in O(2)-transfer was also significantly dependent on the ring size of tetraazamacrocycles, and the reactivity order in the O(2)-transfer reactions was the same as that observed in the aldehyde oxidation reactions.  相似文献   

19.
Hsieh CH  Hsu IJ  Lee CM  Ke SC  Wang TY  Lee GH  Wang Y  Chen JM  Lee JF  Liaw WF 《Inorganic chemistry》2003,42(12):3925-3933
The preparation of complexes trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) (1), cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) (2), trans-[Ni(-SC(6)H(4)-o-NH-)(2)](-) (3), and [Ni(-SC(6)H(4)-o-S-)(2)](-) (4) by oxidative addition of 2-aminophenyl dichalcogenides to anionic [Ni(CO)(SePh)(3)](-) proves to be a successful approach in this direction. The cis arrangement of the two tellurium atoms in complex 2 is attributed to the intramolecular Te.Te contact interaction (Te.Te contact distance of 3.455 A). The UV-vis electronic spectra of complexes 1 and 2 exhibit an intense absorption at 936 and 942 nm, respectively, with extinction coefficient epsilon > 10000 L mol(-)(1) cm(-)(1). The observed small g anisotropy, the principal g values at g(1) = 2.036, g(2) = 2.062, and g(3) = 2.120 for 1 and g(1) = 2.021, g(2) = 2.119, and g(3) = 2.250 for 2, respectively, indicates the ligand radical character accompanied by the contribution of the singly occupied d orbital of Ni(III). The X-ray absorption spectra of all four complexes show L(III) peaks at approximately 854.5 and approximately 853.5 eV. This may indicate a variation of contribution of the Ni(II)-Ni(III) valence state. According to the DFT calculation, the unpaired electron of complex 1 and 2 is mainly distributed on the 3d(xz)() orbital of the nickel ion and on the 4p(z)() orbital of selenium (tellurium, 5p(z)()) as well as the 2p(z)() orbital of nitrogen of the ligand. On the basis of X-ray structural data, UV-vis absorption, electron spin resonance, magnetic properties, DFT computation, and X-ray absorption (K- and L-edge) spectroscopy, the monoanionic trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) and cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) complexes are appositely described as a resonance hybrid form of Ni(III)-bis(o-amidochalcogenophenolato(2-)) and Ni(II)-(o-amidochalcogenophenolato(2-))-(o-iminochalcogenobenzosemiquinonato(1-) pi-radical; i.e., complexes 1 and 2 contain delocalized oxidation levels of the nickel ion and ligands.  相似文献   

20.
The reaction of the low-spin iron(III) complex [Fe(dmbpy)(CN)(4)](-) (1) with fully solvated cobalt(II) ions affords the cyanide-bridged heterobimetallic chain {[Fe(III)(dmbpy)(CN)(4)](2)Co(II)(H(2)O)(2)}(n) · 4nH(2)O (2), which exhibits intrachain ferromagnetic coupling and double slow relaxation of the magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号