首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel three‐dimensional (3D) ZnII coordination polymer, namely, poly[[[1,4‐bis(pyridin‐4‐yl)benzene](μ3‐3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoato)zinc(II)] 1,4‐bis(pyridin‐4‐yl)benzene], {[Zn(C22H16O6)(C16H12N2)]·C16H12N2}n or {[Zn(PMBD)(DPB)]·DPB}n, 1 , where H2PMBD is 3,3′‐{[1,3‐phenylenebis(methylene)]bis(oxy)}dibenzoic acid and DPB is 1,4‐bis(pyridin‐4‐yl)benzene, has been synthesized by self‐assembly using zinc nitrate, a semi‐rigid dicarboxylic acid and a nitrogen‐containing ligand. The single‐crystal X‐ray structure determination indicates that 1 possesses an intriguing 3D architecture with a 4‐connected uninodal cds topology, which is constructed from dinuclear {Zn2} clusters and V‐shaped PMBD2? linkers. Compound 1 exhibits excellent photocatalytic activity on the degradation of the organic dyes Rhodamine B (RhB), Rhodamine 6G (Rh6G) and Methyl Red (MR).  相似文献   

2.
Three structurally related flexible bis(imidazole) ligands reacted with Co(NO3)2 · 6H2O and succinic acid (L1) to yield three new metal‐organic frameworks {[Co(L1)(L2)] · (H2O)}n ( 1 ) [L2 = 2‐bis(imidazol‐1‐yl)ethane], {[Co(L1)(L3)](H2O)}n ( 2 ) [L3 = 1,4‐bis(imidazol‐1‐yl) butane], and {[Co(L1)(L4)] · (H2O)}n ( 3 ) [L4 = 1,4‐bis(2‐methyl‐imidazol‐1‐yl)butane], respectively. These complexes were synthesized under solvothermal conditions and characterized by elemental analysis, IR spectroscopy, single‐crystal and powder X‐ray diffraction, as well as thermal analyses. Interestingly, the ligands in these complexes exhibit different conformations and further cause three different configurations. Complex 1 shows a three‐dimensional (3D) framework, which is connected by two‐dimensional (2D) layer structures through hydrogen bonds. Complex 2 is a diamond structure with threefold interpenetration. Complex 3 is a 3D framework linked by hydrogen bonds like complex 1 .  相似文献   

3.
In the title compound, {[Zn(C8H4O5)(C12H10N2)]·0.5C12H10N2}n or {[Zn(HO‐BDC)(bpe)]·0.5bpe}n [HO‐H2BDC is 5‐hydroxyisophthalic acid and bpe is 1,2‐bis(pyridin‐4‐yl)ethene], the asymmetric unit contains a ZnII atom, one HO‐BDC ligand, one coordinated bpe ligand and half a noncoordinating bpe molecule with crystallographic inversion symmetry. Each ZnII centre is four‐coordinated by two O atoms from two distinct HO‐BDC ligands and two N atoms from two different bpe ligands in a ZnO2N2 coordination environment. The three‐dimensional topology of the title compound corresponds to a fourfold interpenetrating diamondoid coordination polymer network, with the uncoordinated bpe ligands located in the cavities, hydrogen bonded to the main network via the hydroxy group of the HO‐H2BDC ligand.  相似文献   

4.
The combination of cobalt, 3,5‐di‐tert‐butyldioxolene (3,5‐dbdiox) and 1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane (tpch) yields two coordination polymers with different connectivities, i.e. a one‐dimensional zigzag chain and a two‐dimensional sheet. Poly[[bis(3,5‐di‐tert‐butylbenzene‐1,2‐diolato)bis(1,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐yl‐3‐olato)[μ4‐1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane]cobalt(III)]–ethanol–water 1/7/5], {[Co2(C14H20O2)4(C26H24N4O)]·7C2H5OH·5H2O}n or {[Co2(3,5‐dbdiox)4(tpch)}·7EtOH·5H2O}n, is the second structurally characterized example of a two‐dimensional coordination polymer based on linked {Co(3,5‐dbdiox)2} units. Variable‐temperature single‐crystal X‐ray diffraction studies suggest that catena‐poly[[[(3,5‐di‐tert‐butylbenzene‐1,2‐diolato)(1,5‐di‐tert‐butyl‐4‐oxocyclohexa‐2,5‐dien‐1‐yl‐3‐olato)cobalt(III)]‐μ‐1‐hydroxy‐1,2,4,5‐tetrakis(pyridin‐4‐yl)cyclohexane]–ethanol–water (1/1/5)], {[Co(C14H20O2)2(C26H24N4O)]·C2H5OH·5H2O}n or {[Co(3,5‐dbdiox)2(tpch)]·EtOH·5H2O}n, undergoes a temperature‐induced valence tautomeric interconversion.  相似文献   

5.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

6.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

7.
The reactions of (R)‐ and (S)‐4‐(1‐carboxyethoxy)benzoic acid (H2CBA) with 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligands afforded a pair of homochiral coordination polymers (CPs), namely, poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate], {[Zn(C10H8O5)(C14H14N4)]·H2O}n or {[Zn{(S)‐CBA}(1,3‐BMIB)]·H2O}n ( 1‐L ), and poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate] ( 1‐D ). Three kinds of helical chains exist in compounds 1‐D and 1‐L , which are constructed from ZnII atoms, 1,3‐BMIB ligands and/or CBA2? ligands. When the as‐synthesized crystals of 1‐L and 1‐D were further heated in the mother liquor or air, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)], [Zn(C10H8O5)(C14H14N4)]n or [Zn{(S)‐CBA}(1,3‐BMIB)]n ( 2‐L ), and poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] ( 2‐D ) were obtained, respectively. The single‐crystal structure analysis revealed that 2‐L and 2‐D only contained one type of helical chain formed by ZnII atoms and 1,3‐BMIB and CBA2? ligands, which indicated that the helical chains were reconstructed though solid‐to‐solid transformation. This result not only means the realization of helical transformation, but also gives a feasible strategy to build homochiral CPs.  相似文献   

8.
Two cadmium(II) coordination polymers {[Cd(btp)(NO2‐1,3‐bdc)(H2O)]·H2O}n ( 1 ) and {[Cd(btp)(1,2‐bdc)(H2O)]·H2O}n ( 2 ) were synthesized by the reaction of 1,3‐bis(1,2,4‐triazol‐1‐yl)propane (btp), 5‐nitroisophthalate (NO2‐1,3‐bdc), and 1,2‐benzenedicarboxylate (1,2‐bdc). 1 consists of undulated 2D (4,4) networks. Two identical undulated layers are parallel stacking to give a (2D→2D) polythreaded 2D network. A 3D supramolecular architectute is constructed through the hydrogen bond interactions. 2 has an unusual 2D (4,4) network with a thickness of ca. 10 Å. The btp ligands exhibit the anti‐gauche conformation in 1 and the anti‐anti conformation in 2 . The flexible btp ligand exhibits the key role in the assembly of the topologies of 1 and 2 . The luminescence and thermal stability were investigated.  相似文献   

9.
Reaction of the flexible phenolic carboxylate ligand 2‐(3,5‐dicarboxylbenzyloxy)benzoic acid (H3L) with nickel salts in the presence of 1,2‐bis(pyridin‐4‐yl)ethylene (bpe) leads to the generation of a mixture of the two complexes under solvolthermal conditions, namely poly[[aqua[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3}nickel(II)] dimethylformamide hemisolvate monohydrate], {[Ni(C16H10O7)(C12H10N2)(H2O)]·0.5C3H7NO·H2O}n or {[Ni(HL)(bpe)(H2O)]·0.5DMF·H2O}n, 1 , and poly[[diaquatris[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]bis{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ2O1:O5}nickel(II)] dimethylformamide disolvate hexahydrate], {[Ni2(C16H10O7)2(C12H10N2)3(H2O)2]·2C3H7NO·6H2O}n or {[Ni2(HL)2(bpe)3(H2O)2]·2DMF·6H2O}n, 2 . In complex 1 , the NiII centres are connected by the carboxylate and bpe ligands to form two‐dimensional (2D) 4‐connected (4,4) layers, which are extended into a 2D+2D→3D (3D is three‐dimensional) supramolecular framework. In complex 2 , bpe ligands connect to NiII centres to form 2D layers with Ni6(bpe)6 metallmacrocycles. Interestingly, 2D+2D→3D inclined polycatenation was observed between these layers. The final 5‐connected 3D self‐penetrating structure was generated through further connection of Ni–carboxylate chains with these inclined motifs. Both complexes were fully characterized by single‐crystal analysis, powder X‐ray diffraction analysis, FT–IR spectra, elemental analyses, thermal analysis and UV–Vis spectra. Notably, an interesting metal/ligand‐induced crystal‐to‐crystal transformation was observed between the two complexes.  相似文献   

10.
Hydrothermal reaction of Cd(NO3)2·4H2O with bbp and p-PDOAH2 at 140 ℃ yielded a novel 1D cadmium(Ⅱ) coordination polymer, [Cd(bbp)(p-PDOA)]n (bbp=2,6-bis(benzimidazol-2-yl)pyridine, p-PDOA=p-phenylenedioxydiacetate dianion), in which CdN3O4 pentagonal bipyramids were linked by p-PDOA ligands in a bis-bidentate mode to construct a zigzag chain with the adjacent Cd…Cd distance of 1.14(1) nm, There exists a 2D supramolecular network linked by π-π stacking with a face-to-face distance of 0.35(1) nm between the 2,6-bis(benzimidazol-2-yl) pyridine ligands and hydrogen-bonding interactions (0.27(4) nm). A 3D supramolecular network was further constructed by these non-covalent interactions between the zippers. The TG/DTG showed that its chain skeleton was thermally stable up to 389 ℃ and the blue fluorescent emission of the complex was determined at 428 nm in a solid state with its long decay lifetime of 7.24 ns.  相似文献   

11.
Two coordination polymers based on 1, 6‐bis(2‐methyl‐imidazole‐1‐yl)‐hexane (bimh), namely {[Zn3(BTC)2(bimh)] · (bimh)}n ( 1 ) and {[Zn(IPA)(bimh)] · (CH3CH2OH)0.5}n ( 2 ) (H3BTC = trimesic acid, H2IPA = isophthalic acid), were synthesized through hydrothermal reactions. In compound 1 , the zinc(II) ions are bridged by BTC3– ligands to form an undulating infinite two‐dimensional (2D) polymeric network. The 3D networks of 1 show a twofold interpenetrating net. In compound 2 , zinc(II) ions are bridged by IPA2– ligands to form one‐dimensional (1D) helical structures. The 2D structures of 2 are further assembled into 3D networks through aromatic π–π stacking interactions. Both compounds exhibit strong photoluminescence at room temperature and may be good candidates for potential luminescence materials.  相似文献   

12.
Two new metal–organic frameworks (MOFs), namely, three‐dimensional poly[diaquabis{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}bis(μ2‐glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4‐mbix)2(H2O)2]·H2O}n, ( I ), and two‐dimensional poly[[{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}(μ2‐glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4‐mbix)]·4H2O}n ( II ), have been synthesized hydrothermally using glutarate (Glu2?) mixed with 1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene (1,4‐mbix), and characterized by single‐crystal X‐ray diffraction, IR and UV–Vis spectroscopy, powder X‐ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF ( I ) shows a 4‐connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF ( II ) displays a two‐dimensional 44‐ sql network with one‐dimensional water chains penetrating the grids along the c direction. The solid‐state photoluminescence analysis of ( II ) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72? ions in aqueous solution.  相似文献   

13.
Three coordination polymers, namely [Co(BDC)( L )] · H2O ( 1 ), [Co(NPH)( L )] · H2O ( 2 ), and [Ni(NPH)( L )(H2O)3] · H2O ( 3 ) [H2BDC = 1, 3‐benzenedicarboxylic acid, H2NPH = 3‐nitrophthalic acid, L = N,N′‐bis(3‐pyridyl)‐terephthalamide] were hydrothermally synthesized by self‐assembly of cobalt/nickel chloride with a semi‐rigid bis‐pyridyl‐bis‐amide ligand and two aromatic dicarboxylic acids. Single crystal X‐ray diffraction analyses revealed that complexes 1 and 2 are two‐dimensional (2D) coordination polymers containing a one‐dimensional (1D) ribbon‐like Co‐dicarboxylate chain and a 1D zigzag Co‐ L chain. Although the coordination numbers of CoII ions and the coordination modes of two dicarboxylates are different in complexes 1 and 2 , they have a similar 3, 5‐connected {42.67.8}{42.6} topology. In complex 3 , the adjacent NiII ions are linked by L ligands to form a 1D polymeric chain, whereas the 1D chains does not extend into a higher‐dimensional structure due to the ligand NPH with monodentate coordination mode. The adjacent layers of complexes 1 and 2 and the adjacent chains of 3 are further linked by hydrogen bonding interactions to form 3D supramolecular networks. Moreover, the thermal stabilities, fluorescent properties, and photocatalytic activities of complexes 1 – 3 were studied.  相似文献   

14.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

15.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

16.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

17.
Two new Zn2+‐based metal–organic frameworks (MOFs) based on biphenyl‐2,2′,5,5′‐tetracarboxylic acid, i.e. H4(o,m‐bpta), and N‐donor ligands, namely, poly[[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis{[1,3‐phenylenebis(methylene)]bis(1H‐imidazole)}dizinc(II)] dimethylformamide monosolvate dihydrate], {[Zn2(C16H6O8)(C14H14N4)2]·C3H7NO·2H2O}n or {[Zn2(o,m‐bpta)(1,3‐bimb)2]·C3H7NO·2H2O}n ( 1 ) {1,3‐bimb = [1,3‐phenylenebis(methylene)]bis(1H‐imidazole)}, and poly[[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis{[1,4‐phenylenebis(methylene)]bis(1H‐imidazole)}dizinc(II)] monohydrate], {[Zn2(C16H6O8)(C14H14N4)2]·H2O}n or {[Zn2(o,m‐bpta)(1,4‐bimb)2]·H2O}n ( 2 ) {1,4‐bimb = [1,4‐phenylenebis(methylene)]bis(1H‐imidazole)}, have been synthesized under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis. Structurally, the (o,m‐bpta)4? ligands are fully deprotonated and combine with Zn2+ ions in μ4‐coordination modes. Complex 1 is a (3,4)‐connected porous network with honeycomb‐like [Zn2(o,m‐bpta)]n sheets formed by 4‐connected (o,m‐bpta)4? ligands. Complex 2 exhibits a (2,4)‐connected network formed by 4‐connected (o,m‐bpta)4? ligands linking Zn2+ ions in left‐handed helical chains. The cis‐configured 1,3‐bimb and 1,4‐bimb ligands bridge Zn2+ ions to form multi‐membered [Zn2(bimb)2] loops. Optically, the complexes show strong fluorescence and display larger red shifts compared to free H4(o,m‐bpta). Complex 2 shows ferroelectric properties due to crystallizing in the C2v polar point group.  相似文献   

18.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

19.
Three copper(II) coordination polymers (CuCPs), namely, [Cu0.5(1,4‐bib)(SO4)0.5]n ( 1 ), {[Cu(1,3‐bib)2(H2O)] · SO4 · H2O}n ( 2 ), and [Cu(bpz)(SO4)0.5]n ( 3 ), were assembled from the reaction of three N‐donors [1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and Hbpz = 3‐(2‐pyridyl)pyrazole] with copper sulfate under hydrothermal conditions. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Structure analyses reveal that complex 1 is a 3D 6‐connected {412 · 63}‐ pcu net, complex 2 is a fourfold 3D 4‐connected 66‐ dia net, whereas complex 3 is a 1D snake‐like chain, which further expanded into 3D supramolecular architectures with the help of C–H ··· O hydrogen bonds. Moreover, the photocatalytic tests demonstrate that the obtained CuCPs are photocatalysts in the degradation of MB with the efficiency is 86.4 % for 1 , 75.3 % for 2 , and 91.3 % for 3 after 2 h, respectively.  相似文献   

20.
Two coordination polymers, namely, {[Zn(bpea) (bmp)] · H2O}n ( 1 ) and {[Ni(bpea)(bimb)] · DMF}n ( 2 ) [H2bpea = biphenylethene‐4,4′‐dicarboxylate, bmp = 1,4‐bis(2‐methylimidazol‐3‐ium‐1‐yl)biphenyl and bimb = 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene], were synthesized under solvothermal conditions with mixed organic ligands. Single crystal X‐ray diffraction reveals that complex 1 features a three‐dimensional (3D) structure with a sixfold interpenetrating dia net. Complex 2 shows a 3D fivefold interpenetrating dia topology. Furthermore, the solid state luminescent properties of complexes 1 and 2 were investigated at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号