首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

2.
Multifunctional 2‐amino‐5‐sulfobenzoic acid (H2afsb) can exhibit a variety of roles during the construction of supramolecular coordination polymers. The pendant carboxylic acid, sulfonic acid and amino groups could not only play a role in directing bonding but could also have the potential to act as hydrogen‐bond donors and acceptors, resulting in extended high‐dimensional supramolecular networks. Two new CuII coordination compounds, namely catena‐poly[[[diaquacopper(II)]‐μ‐1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane‐κ2N4:N4′] bis(3‐amino‐4‐carboxybenzenesulfonate) dihydrate], {[Cu(C10H16N6)2(H2O)2](C7H6NO5S)2·2H2O}n or {[Cu(bth)2(H2O)2](Hafsb)2·2H2O}n, (1), and bis(μ‐2‐amino‐5‐sulfonatobenzoato‐κ2O1:O1′)bis{μ‐1,2‐bis[(1H‐imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}bis[aquacopper(II)] trihydrate, [Cu2(C7H5NO5S)2(C14H14N4)2(H2O)2]·3H2O or [Cu2(afsb)2(obix)2(H2O)2]·3H2O, (2), have been obtained through the assembly between H2afsb and the CuII ion in the presence of the flexible N‐donor ligands 1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane (bth) and 1,2‐bis[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzene (obix), respectively. Compound (1) consists of a cationic coordination polymeric chain and 3‐amino‐4‐carboxybenzenesulfonate (Hafsb) anions. Compound (2) exhibits an asymmetric dinuclear structure. There are hydrogen‐bonded networks within the lattices of (1) and (2). Interestingly, both (1) and (2) exhibit reversible dehydration–rehydration behaviour.  相似文献   

3.
Reaction of the flexible phenolic carboxylate ligand 2‐(3,5‐dicarboxylbenzyloxy)benzoic acid (H3L) with nickel salts in the presence of 1,2‐bis(pyridin‐4‐yl)ethylene (bpe) leads to the generation of a mixture of the two complexes under solvolthermal conditions, namely poly[[aqua[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3}nickel(II)] dimethylformamide hemisolvate monohydrate], {[Ni(C16H10O7)(C12H10N2)(H2O)]·0.5C3H7NO·H2O}n or {[Ni(HL)(bpe)(H2O)]·0.5DMF·H2O}n, 1 , and poly[[diaquatris[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]bis{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ2O1:O5}nickel(II)] dimethylformamide disolvate hexahydrate], {[Ni2(C16H10O7)2(C12H10N2)3(H2O)2]·2C3H7NO·6H2O}n or {[Ni2(HL)2(bpe)3(H2O)2]·2DMF·6H2O}n, 2 . In complex 1 , the NiII centres are connected by the carboxylate and bpe ligands to form two‐dimensional (2D) 4‐connected (4,4) layers, which are extended into a 2D+2D→3D (3D is three‐dimensional) supramolecular framework. In complex 2 , bpe ligands connect to NiII centres to form 2D layers with Ni6(bpe)6 metallmacrocycles. Interestingly, 2D+2D→3D inclined polycatenation was observed between these layers. The final 5‐connected 3D self‐penetrating structure was generated through further connection of Ni–carboxylate chains with these inclined motifs. Both complexes were fully characterized by single‐crystal analysis, powder X‐ray diffraction analysis, FT–IR spectra, elemental analyses, thermal analysis and UV–Vis spectra. Notably, an interesting metal/ligand‐induced crystal‐to‐crystal transformation was observed between the two complexes.  相似文献   

4.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

5.
The reaction of the proton‐transfer compound piperazine‐1,4‐diium pyrazine‐2,3‐dicarboxylate 4.5‐hydrate, C4H12N22+·C6H2N2O42−·4.5H2O or (pipzH2)(pyzdc)·4.5H2O (pyzdcH2 is pyrazine‐2,3‐dicarboxylic acid and pipz is piperazine), (I), with Zn(NO3)2·6H2O and CoCl2·6H2O results in the formation of bis(piperazine‐1,4‐diium) bis(μ‐pyrazine‐2,3‐dicarboxylato)‐κ3N1,O2:O33O3:N1,O2‐bis[aqua(pyrazine‐2,3‐dicarboxylato‐κ2N1,O2)zinc(II)] decahydrate, (C4H12N2)2[Zn2(C6H2N2O4)4(H2O)2]·10H2O or (pipzH2)2[Zn(pyzdc)2(H2O)]2·10H2O, (II), and catena‐poly[piperazine‐1,4‐diium [cobalt(II)‐bis(μ‐pyrazine‐2,3‐dicarboxylato)‐κ3N1,O2:O33O3:N1,O2] hexahydrate], {(C4H12N2)[Co(C6H2N2O4)2]·6H2O}n or {(pipzH2)[Co(pyzdc)2]·6H2O}n, (III), respectively. In (I), pyzdcH2 is doubly deprotonated on reaction with piperazine as a base. Compound (II) crystallizes as a dimer, whereas compound (III) exists as a one‐dimensional coordination polymer. In (II), two pyzdc2− groups chelate to each of the two ZnII atoms through a ring N atom and an O atom of the 2‐carboxylate group. In one ligand, the adjacent 3‐carboxylate group bridges to a neighbouring metal atom. A water molecule ligates in the sixth coordination site. The structure of (II) can be described as a commensurate superlattice due to an ordering in the hydrogen‐bonded network. In (III), no water is coordinated to the metal atom and the coordination sphere is comprised of two N,O‐chelates plus two bridging O atoms. A large number of hydrogen bonds are observed in all three compounds. These interactions, as well as π–π and C=O...π stacking interactions, play important structural roles.  相似文献   

6.
The heterometallic CuII‐BaII coordination polymer, namely [CuBa(tdc)2(H2O)(DMF)]n ( 1 ) (H2tdc = 2,5‐thiophenedicarboxylic acid, DMF = N,N′‐dimethylformamide), was solvothermally synthesized by the reaction of H2tdc, CuCl2 · 2H2O, and Ba(NO3)2. Single crystal X‐ray diffraction analysis reveals that compound 1 features a 3D intricate framework with the 1D channels occupied by the coordinated solvent molecules. After removing the coordinated solvent molecules, the desolvated samples of 1a exhibit high capacity for light hydrocarbons.  相似文献   

7.
In the hydrated adduct N,N′‐di­methyl­piperazine‐1,4‐diium bis(3‐carboxy‐2,3‐di­hydroxy­propanoate) dihydrate, [MeNH(CH2CH2)2NHMe]2+·2(C4H5O6)?·2H2O or C6H16N22+·2C4H5O6?·2H2O, formed between racemic tartaric acid and N,N′‐di­methyl­piperazine (triclinic P, Z′ = 0.5), the cations lie across centres of inversion. The anions alone form chains, and anions and water mol­ecules together form sheets; the sheets are linked by the cations to form a pillared‐layer framework. The supramolecular architecture thus takes the form of a family of N‐dimensional N‐component structures having N = 1, 2 or 3.  相似文献   

8.
A novel hydrolytic stable CoII–organic framework, namely poly[[bis(2‐amino‐4‐sulfonatobenzoato‐κO1)tetraaquatris{μ‐1,4‐bis[(imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}dicobalt(II)] tetrahydrate], {[Co(C7H5NO5S)(C14H14N4)1.5(H2O)2]·2H2O}n, ( 1 ), based on multifunctional 2‐amino‐5‐sulfobenzoic acid (H2asba) and the auxiliary flexible ligand 1,4‐bis[(imidazol‐1‐yl)methyl]benzene (bix), was prepared using the solution evaporation method. The purity of ( 1 ) was confirmed by elemental analysis and powder X‐ray diffraction (PXRD) analysis. Complex ( 1 ) shows a novel 1D→2D interpenetrating network, which is further extended into a 3D supramolecular framework with channels occupied by the lattice water molecules. The 2‐amino‐4‐sulfonatobenzoate (asba2?) ligand adopts a monodentate coordination mode. The bix ligands exhibit gauche–gauche (GG) and trans–trans (TT) conformations. A detailed analysis of the solid‐state diffuse‐reflectance UV–Vis spectrum reveals that an indirect band gap exists in the complex. The band structure, the total density of states (TDOS) and the partial density of states (PDOS) were calculated using the CASTEP program. The calculated band gap (Eg) matches well with the experimental one. The complex exhibits a reversible dehydration–rehydration behaviour. Interestingly, gas sorption experiments demonstrate that the new fully anhydrous compound obtained by activating complex ( 1 ) at 400 K shows selective adsorption of CO2 over N2. Complex ( 1 ) retains excellent framework stability in a variety of solvents and manifests distinct solvent‐dependent fluorescence properties. Moreover, the complex shows multiresponsive fluorescence sensing for some nitroaromatics in aqueous medium.  相似文献   

9.
Reaction of Co(II) with the nitrogen‐rich ligand N,N‐bis(1H‐tetrazole‐5‐yl)‐amine (H2bta) leads to a mixed‐valence, 3D, porous, metal–organic framework (MOF)‐based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n?(22 H2O)n ( 1 ). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm?3, [Co9(bta)10(Hbta)2(H2O)10]n ( 2 ). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1 , reflecting guest‐dependent energy and sensitivity of 3D, MOF‐based, energetic materials. Less‐sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2 .  相似文献   

10.
By altering auxiliary N‐donor ligands, two ZnII compounds, [Zn3(HL)2(4,4′‐bipy)3]n ( 1 ) and [Zn4(L)2(bpp)]n ( 2 ) (H4L = 3‐(2′,4′‐dicarboxylphenoxy)phthalic acid, 4,4′‐bipy = 4,4′‐bipyridine, and bpp = 1,3‐bis(4‐pyridyl)propane), were obtained under hydrothermal conditions. Structural analyses revealed that compound 1 features a trinodal (3,4,4)‐connected 3D topological framework, and compound 2 displays a (3,8)‐connected 3D pillar‐layered framework with a tfz‐d topology. Furthermore, the thermal stabilities and the luminescent properties of compounds 1 and 2 were investigated.  相似文献   

11.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

12.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP), in the presence of the N‐donor flexible bipyridyl‐type ligands 1,3‐bis(pyridin‐4‐yl)propane (bpp) and N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide (4‐bpme) and ZnII ions, was used as an O‐donor ligand to assemble two novel luminescent metal–organic frameworks (MOFs), namely poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]zinc(II)] dimethylformamide monosolvate], {[Zn(C8H2Br3NO4)(C13H14N2)]·C3H7NO}n, ( 1 ), and poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)diaqua[μ‐N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide‐κ2N:N′]zinc(II)] monohydrate], {[Zn(C8H2Br3NO4)(C14H14N4O2)(H2O)2]·H2O}n, ( 2 ), using the solution evaporation method. Both ( 1 ) and ( 2 ) were characterized by FT–IR spectroscopy, elemental analysis (EA), solid‐state diffuse‐reflectance UV–Vis spectroscopy, and powder and single‐crystal X‐ray diffraction analysis. Complex ( 1 ) shows a two‐dimensional (2D) corrugated layer simplified as a 2D (4,4) topological network. The supramolecular interactions (π–π stacking, hydrogen bonding and C—Br…Br halogen bonding) play significant roles in the formation of an extended three‐dimensional (3D) supramolecular network of ( 1 ). Complex ( 2 ) crystallizes in the chiral space group P212121 and exhibits a novel 3D homochiral framework, showing a diamond‐like topology with Schläfli symbol 66. The homochirality of ( 2 ) is further confirmed by the solid‐state circular dichroism (CD) spectrum. The second harmonic generation (SHG) property of ( 2 ) was also investigated. The hydrogen and C—Br…Br/O halogen bonding further stabilize the framework of ( 2 ). The central ZnII ions in ( 1 ) and ( 2 ) show tetrahedral and octahedral coordination geometries, respectively. The coordinated and uncoordinated water molecules in ( 2 ) could be removed selectively upon heating. Most importantly, ( 1 ) and ( 2 ) show rapid and highly sensitive sensing for a large pool of nitroaromatic explosives (NAEs).  相似文献   

13.
A series of two‐dimensional (2D) coordination polymers (CPs), namely poly[[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)digadolinium(III)] N,N‐dimethylacetamide monosolvate], {[Gd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n ( CP1 ), poly[[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)didysprosium(III)] N,N‐dimethylacetamide monosolvate], {[Dy2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n ( CP2 ), poly[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)dineodymium(III)], [Nd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n ( CP3 ), poly[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)disamarium(III)], [Sm2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n ( CP4 ), has been synthesized from rigid biphenyl‐3,3′,5,5′‐tetracarboxylic acid under solvothermal conditions. Their structures have been determined by single‐crystal X‐ray diffraction analyses, elemental analyses, IR spectra, powder X‐ray diffraction and thermogravimetric analyses, and CP1 – CP4 crystallize in the monoclinic space group P21/n. CP1 – CP4 are isomorphous and feature similar 2D double layers, which are further extended via interlayer hydrogen‐bonding interactions into a three‐dimensional (3D) supramolecular structure. Hydrogen‐bonding interactions between N,N‐dimethylacetamide molecules and carboxylate O atoms strengthen the packing of the layers. The organic ligands interconnect with metal ions to generate 2D layered structures with a (4,4)‐connected net having {44.62} topology. CP1 has been investigated for its magnetic properties and magnetic susceptibility measurements were carried out in the range 2.0–300 K. The results of the magnetic measurements show weak antiferromagnetic coupling between the GdIII ions in CP1 . Moreover, the strong luminescence of CP2 and CP4 can be selectively quenched by the Fe3+ ion and toxic solvents (e.g. acetone).  相似文献   

14.
The structures of two salts of flunarizine, namely 1‐bis[(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine, C26H26F2N2, are reported. In flunarizinium nicotinate {systematic name: 4‐bis[(4‐fluorophenyl)methyl]‐1‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazin‐1‐ium pyridine‐3‐carboxylate}, C26H27F2N2+·C6H4NO2, (I), the two ionic components are linked by a short charge‐assisted N—H...O hydrogen bond. The ion pairs are linked into a three‐dimensional framework structure by three independent C—H...O hydrogen bonds, augmented by C—H...π(arene) hydrogen bonds and an aromatic π–π stacking interaction. In flunarizinediium bis(4‐toluenesulfonate) dihydrate {systematic name: 1‐[bis(4‐fluorophenyl)methyl]‐4‐[(2E)‐3‐phenylprop‐2‐en‐1‐yl]piperazine‐1,4‐diium bis(4‐methylbenzenesulfonate) dihydrate}, C26H28F2N22+·2C7H7O3S·2H2O, (II), one of the anions is disordered over two sites with occupancies of 0.832 (6) and 0.168 (6). The five independent components are linked into ribbons by two independent N—H...O hydrogen bonds and four independent O—H...O hydrogen bonds, and these ribbons are linked to form a three‐dimensional framework by two independent C—H...O hydrogen bonds, but C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the structure of (II). Comparisons are made with some related structures.  相似文献   

15.
Four metal‐organic coordination polymers [Cd(4‐bpcb)1.5Cl2(H2O)] ( 1 ), [Cd(4‐bpcb)0.5(mip)(H2O)2] · 3H2O ( 2 ), [Co(4‐bpcb)(oba)(H2O)2] ( 3 ), and [Ni(4‐bpcb)(oba)(H2O)2] ( 4 ) [4‐bpcb = N,N′‐bis(4‐pyridinecarboxamide)‐1, 4‐benzene, H2mip = 5‐methylisophthalic acid, and H2oba = 4, 4′‐oxybis(benzoic acid)] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy, powder X‐ray diffraction, and TG analysis. In complex 1 , two Cl anions serve as bridges to connect two Cd‐(μ1‐4‐bpcb) subunits forming a dinuclear unit, which are further linked by μ2‐bridging 4‐bpcb to generate 1D zigzag chain. Complex 2 shows a 2D 63 network constructed by [Cd‐mip]n zigzag chains and μ2‐bridging 4‐bpcb ligands. Complexes 3 and 4 are isostructural 2D (4, 4) grid networks derived from [M‐oba]n (M = Co, Ni) zigzag chains and [M‐(4‐bpcb)]n linear chains. The 1D chains for 1 and the 2D networks for 2 – 4 are finally extended into 3D supramolecular architectures by hydrogen bonding interactions. The roles of dicarboxylates and central metal ions on the assembly and structures of the target compounds were discussed. Moreover, the thermal stabilities, photoluminescent properties, and photocatalytic activities of complexes 1 – 4 and the electrochemical properties of complexes 3 and 4 were investigated.  相似文献   

16.
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature.  相似文献   

17.
A new three‐dimensional interpenetrated CdII–organic framework based on 3,3′‐azodibenzoic acid [3,3′‐(diazenediyl)dibenzoic acid, H2azdc] and the auxiliary flexible ligand 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb), namely poly[[bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′][μ2‐3,3′‐(diazenediyl)dibenzoato‐κ2O:O′]cadmium(II)] monohydrate], {[Cd(C14H8N2O4)(C10H14N2)2]·H2O}n, (1), was obtained by a typical solution reaction in mixed solvents (water and N,N′‐dimethylformamide). Each CdII centre is six‐coordinated by two O atoms of bis‐monodentate bridging carboxylate groups from two azdc2− ligands and by four N atoms from four bimb ligands, forming an octahedral coordination environment. The CdII ions are connected by the bimb ligands, resulting in two‐dimensional (4,4) layers, which are further pillared by the azdc2− ligands, affording a threefold interpenetrated three‐dimensional α‐Po topological framework with the Schläfli symbol 41263. The thermal stability and solid‐state fluorescence properties of (1) have been investigated.  相似文献   

18.
A two‐dimensional MnII coordination polymer (CP), poly[bis[μ2‐2,6‐bis(imidazol‐1‐yl)pyridine‐κ2N3:N3′]bis(thiocyanato‐κN)manganese] [Mn(NCS)2(C11H9N5)2]n, (I), has been obtained by the self‐assembly reaction of Mn(ClO4)2·6H2O, NH4SCN and bent 2,6‐bis(imidazol‐1‐yl)pyridine (2,6‐bip). CP (I) was characterized by FT–IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The crystal structure features a unique two‐dimensional (4,4) network with one‐dimensional channels. The luminescence and nitrobenzene‐sensing properties were explored in a DMF suspension, revealing that CP (I) shows a strong luminescence emission and is highly sensitive for nitrobenzene detection.  相似文献   

19.
The microporous metal‐organic framework Cd2(ABTC)(H2O)(DMA)2 · H2O · 3DMA ( 1 ) (H4ABTC = 3, 3′,5, 5′‐azobenzenetetracarboxylic acid; DMA = N,N′‐dimethylacetamide) was prepared by solvothermal reaction and characterized. X‐ray structure analysis revealed that compound 1 is a three‐dimensional (3D) open framework with 2D channels. The topology is based on a PtS net, constructed of 4‐connected rectangular ABTC4– units with 4‐connected tetrahedral dinuclear Cd2(CO2)4(H2O)(DMA)2 secondary building units (SBUs). The solid‐state excitation‐emission spectra showed that the strongest emission peak is at 403 nm upon excitation at λ = 287 nm.  相似文献   

20.
Compounds trans‐tetraaquadichloridocobalt(II)–piperazine‐2,5‐dione (1/1), [CoCl2(H2O)4]·C4H6N2O2, (I), and trans‐tetraaquadichloridonickel(II)–piperazine‐2,5‐dione (1/1), [NiCl2(H2O)4]·C4H6N2O2, (II), are isomorphous. In each structure, the metal complex and the piperazinedione unit both lie across centres of inversion in the space group P21/n. The [MCl2(H2O)4] units (M = Co or Ni) are linked by O—H...Cl hydrogen bonds into sheets of R22(8) and R42(12) rings, and these sheets are linked by the piperazinedione components via a combination of O—H...O and N—H...Cl hydrogen bonds into a three‐dimensional framework. In catena‐poly[[[trans‐diaquacopper(II)]‐di‐μ‐chlorido] piperazine‐2,5‐dione solvate], {[CuCl2(H2O)2]·C4H6N2O2}n, (III), the metal ion and the piperazine unit both lie across centres of inversion in the space group I2/a. The coordination polymer forms chains of centrosymmetric [CuCl2(H2O)2] units running parallel to [010] and these are linked by the piperazinedione units into a three‐dimensional framework structure. In poly[μ3‐nitrato‐μ2‐piperazine‐2,5‐dione‐silver(I)], [Ag(NO3)(C4H6N2O2)]n, (IV), the silver and nitrate ions lie on mirror planes in the space group Pnma, while the piperazinedione unit lies across a centre of inversion. The compound is a coordination polymer containing five‐coordinate approximately square‐pyramidal Ag, in which the ligating O atoms are derived from three different nitrate ligands and two different piperazinedione ligands. The ionic components form sheets in which each anion is coordinated to three different cations, and these sheets are linked into a three‐dimensional framework by the organic ligands, each of which coordinates to two different Ag centres. The significance of this study lies in its demonstration of a wide variety of framework types built from a common and very simple organic component with simple metal salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号