首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Gold films with a nominal thickness of 5–40 monolayers were grown on dielectric substrates and imaged by scanning force microscopy (SFM). The films originally consisted of well-separated or densely packed clusters. During imaging in contact mode, the morphology of the films changed drastically. At low coverage, i.e. Θ<10 monolayers, the well-known stripes originating from mobile clusters, eventually accumulated into larger aggregates, were observed. In contrast, at larger coverage, highly ordered structures consisting of one-dimensional wires evolved during scanning. They often were parallel with equal separation, i.e. well-defined periodicity, over distances of several μm. Typically, the wires were 5–10 nm high and 50–100 nm wide. Investigations of Au films prepared at varying temperature on different dielectric substrates allow us to suggest a self-assembling mechanism for wire formation in which gold is periodically collected by the SFM tip and redeposited as soon as a critical amount is reached. Received: 22 February 1999 / Accepted: 2 March 1999 / Published online: 7 April 1999  相似文献   

2.
The fractal dimensions of six differently mechanically pre-treated stainless steel samples were investigated using five fractal algorithms. The surfaces were analyzed using a profiler, atomic force microscopy (AFM), scanning electron microscopy (SEM) and light microscopy (LM), and thereafter adhesively bonded and tested in single-overlap joints to test their tensile strength. All samples showed different fractal behavior, depending on the microscopic methods and fractal algorithms. However, the overall relation between fractal dimension and tensile strength is qualitatively the same, except for the SEM images. This verifies that tensile strength is correlated to fractal dimension, although only within the length-scale of the profiler and the light microscope (≈0.5–100 μm). The AFM method was excluded in this comparison, since the limitation in the z-direction for the AFM scanner made it difficult to scan the rougher parts of the blasted samples. The magnitude of the surfaces is a parameter not often considered in fractal analysis. It is shown that the magnitude, for the Fourier method, is correlated to the arithmetic average difference, Ra, but only weakly to the fractal dimension. Hence, traditional parameters, such as Ra, tell us very little about the spatial distribution of the elevation data. Received: 22 December 1999 / Accepted: 9 October 2000 / Published online: 9 February 2001  相似文献   

3.
CdTe epilayers have been grown by vapor phase epitaxy (VPE) on glass, MgO, sapphire, LiNbO3 and mica substrates. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show the good structural quality of the epilayers. In these epilayers, a few optical modes were excited with a 1.33-μm laser. The measured propagation losses were in the range between 5 dB/cm and less than 0.5 dB/cm. From dark-mode m-lines, the epilayer thickness was found to be in the 1–3 μm range, in good accord with that obtained by SEM measurements. The refractive index obtained from the fitting is also in good accord with that of bulk CdTe. Received: 7 October 1999 / Accepted: 13 March 2000 / Published online: 5 July 2000  相似文献   

4.
Laser ablation of thin TiN films deposited on steel substrates has been studied under wide-range variation of irradiation conditions (pulsewidth, wavelength, energy density and spot size). It has been demonstrated that both picosecond (150–300 ps) and nanosecond (5–9 ns) laser pulses were suitable for controllable ablation and microstructuring of a 1-μm-thick TiN film unlike longer 150-ns pulses. The ablation rate was found to be practically independent of the wavelength (270–1078 nm) and pulsewidth (150 ps–9 ns), but it increased substantially when the size of a laser spot was reduced from 15–60 μm to 3 μm. The laser ablation technique was applied to produce microstructures in the thin TiN films consisting of microcraters with a typical size of 3–5 μm in diameter and depth less than 1 μm. Tests of lubricated sliding of the laser-structured TiN films against a steel ball showed that the durability of lubricated sliding increased by 25% as compared to that of the original TiN film. Received: 28 July 1999 / Accepted: 17 April 2000 / Published online: 20 September 2000  相似文献   

5.
For direct writing of electrically conducting connections and areas into insulating gold oxide thin films a scanning Ar+ laser beam and a 30 keV Ga+ focused ion beam (FIB) have been used. The gold oxide films are prepared by magnetron sputtering under argon/oxygen plasma. The patterning of larger areas (dimension 10–100 μm) has been carried out with the laser beam by local heating of the selected area above the decomposition temperature of AuOx (130–150 °C). For smaller dimensions (100 nm to 10 μm) the FIB irradiation could be used. With both complementary methods a reduction of the sheet resistance by 6–7 orders of magnitude has been achieved in the irradiated regions (e.g. with FIB irradiation from 1.5×107 Ω/□ to approximately 6 Ω/□). The energy-dispersive X-ray analysis (EDX) show a considerably reduced oxygen content in the irradiated areas, and scanning electron microscopy (SEM), as well as atomic force microscopy (AFM) investigations, indicate that the FIB patterning in the low-dose region (1014 Ga+/cm2) is combined with a volume reduction, which is caused by oxygen escape rather than by sputtering. Received: 30 May 2000 / Accepted: 31 May 2000 / Published online: 13 July 2000  相似文献   

6.
Modeling of UV pulsed-laser ablation of metallic targets   总被引:1,自引:0,他引:1  
A model to describe the laser ablation of metallic targets is presented. It accounts for the main physical processes involved in the laser–solid–plasma interaction by considering the photon absorption and the ionization mechanisms that are active in the plasma, as well as the laser-produced plasma kinetics. The model is used to simulate the laser ablation of aluminum targets irradiated with a 6-ns UV laser pulse at 0.35 μm, and the results are compared with experimental findings. Calculations show that all the investigated plasma parameters strongly depend on the laser intensity until a roll-off is reached at irradiance ≥1.5 GW cm-2. The satisfactorily good agreement between model predictions and experimental findings confirms that laser–plasma interaction processes and plasma kinetics play a relevant role during nanosecond laser ablation of metals in the laser intensity range of concern in this study. Received: 12 February 1999 / Accepted: 12 April 1999 / Published online: 7 July 1999  相似文献   

7.
8.
Two-dimensional antireflective periodical microstructures for the IR range are fabricated on the surface of CVD diamond films. These structures are created using an ArF excimer laser (λ=193 nm) and a direct writing scheme consisting of a beam collimator and a microscope objective to focus the beam onto the sample. Two different arrays are investigated. One has a spacing of 3 μm and is produced with single shots and the other one has a spacing of 4 μm and is produced with three shots per spot. The hole depth and shape are measured with an atomic force microscope (AFM). The optical transmittance and the scattering properties of the structure at 10.6 μm are reported for a CO2 laser beam. With a spectrometer further transmission measurements in the range of 5 to 20 μm are performed. Received: 16 September 1999 / Accepted: 11 October 1999 / Published online: 24 March 2000  相似文献   

9.
3 crystals are measured in the transparency region (with the accuracy ±0.0002) and for the upper phonon polariton branch (with the accuracy ±0.003–±0.05), from 0.44 μm up to 10.5 μm. The method of spontaneous parametric light scattering is used for measurement of the ordinary refractive index dispersion in the mid-infrared region and for determination of the domain grating period d=5.6±0.2 μm in the periodically-poled crystal. Received: 29 January 1997/Revised version: 10 July 1997  相似文献   

10.
Interlayer diffusion in epitaxial systems with a high energy barrier at the atomic steps – the so-called Ehrlich–Schwoebel (ES) barrier – is strongly reduced. As a consequence of this, a continuous accumulation of roughness takes place during growth. This undesirable effect can be corrected by using surfactant agents. We have studied the influence of the ES barrier on the preparation of epitaxial films on Cu(111), and the surfactant effect of a monolayer of Pb. Received: 21 April 1999 / Accepted: 17 August 1999 / Published online: 6 October 1999  相似文献   

11.
Cold atomic beam from a rubidium funnel   总被引:1,自引:0,他引:1  
We report an experimental demonstration of a continuous, slow and cold beam of rubidium atoms from a two-dimensional magneto-optic trap or atomic funnel. Typically 7.3(7)×108 atoms/s are ejected from the funnel with a variable velocity in the range 2–8 m/s and a temperature of 45–55 μK in the moving frame. This represents the first demonstration of sub-Doppler laser cooling in an atomic beam and temperatures as low as ≈25 μK have been observed. Received: 30 September 1999 / Published online: 5 April 2000  相似文献   

12.
Low-threshold field electron emission (FEE) is reported for periodic arrays of micro-tips produced by laser ablation of Si wafers. The best samples show emission at threshold fields as low as 4–5 V/μm for n-type Si substrates and of 1–2 V/μm for p-doped Si substrates, as measured with a flat-screen technique. Auger electron spectroscopy and X-ray electron spectroscopy reveal island-like deviation of the SiO2 stoichiometry on the tip surfaces, with lateral dimensions of less than 100 nm. Microscopic studies using a special field-emission STM show that the emission originates from well-conducting regions of sub-micron size. The experimental data suggest FEE from the tip arrays by a geometric field enhancement of both the individual micro-tip and the narrow conducting channels in the tip body. Received: 3 May 2002 / Accepted: 1 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +7-095/135-82-34, E-mail: shafeev@kapella.gpi.ru  相似文献   

13.
The oxidation-induced stoichiometric and morphological changes of the oxide film on a stainless-steel surface are observed by X-ray photoelectron spectroscopy and atomic force microscopy for annealing temperatures in the range 400–500 °C in oxygen partial pressures of 10-9 to 10-4 Torr With increasing the temperature, a significant shift occurs in the Cr 2p3/2 binding energy towards higher energies, indicating a change in the oxidation state of chromium. It is found that at 450 °C lower oxygen partial pressures favor the formation of a smooth, pure chromium oxide. At a low oxygen pressure the oxide formed mainly consists of chromium oxide that shows a markedly smooth surface with no distinct grains, whereas at a high pressure the oxide formed mainly consists of iron oxide with distinct grains. Received: 27 January 1999 / Accepted: 18 March 1999 / Published online: 16 September 1999  相似文献   

14.
We report a new imaging diagnostic suitable for measurements of infrared-active molecules, namely infrared planar laser-induced fluorescence (IR PLIF), in which a tunable infrared source is used to excite vibrational transitions in molecules and vibrational fluorescence is collected by an infrared camera. A nanosecond-pulse Nd:YAG-pumped KTP/KTA OPO/OPA system is used to generate 12 mJ of tunable output near 2.35 μm which excites the 2ν band of carbon monoxide (CO); fluorescence resulting from excited CO is collected at 4.7 μm by using an InSb focal plane array. Quantitative, high-SNR PLIF imaging of gas-phase CO is demonstrated at a 10-Hz acquisition rate with a minimum detection limit of 1350 ppm at 300 K. Received: 30 July 1999 / Published online: 16 September 1999  相似文献   

15.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

16.
Nitridation of hydrogen-terminated silicon in a diluted N2:N2O atmosphere was studied by X-ray photoemission spectroscopy and high-resolution electron microscopy. Our analysis showed that the broad N(1s) peak of width 1.5 eV at 398–399 eV, usually reported in the literature, is preceded by the formation of a narrow peak of width around 1.0 eV at 397.5 eV, attributed to the moiety Si3N in which silicon is only marginally oxidized, and two other peaks at 400.0 eV and 401.5 eV, attributed to the moieties Si2NOSi and SiNO, respectively. Received: 11 July 2001 / Accepted: 19 September 2001 / Published online: 20 December 2001  相似文献   

17.
A simple method for patterning of thin (15–650 nm) aluminum films on glass substrates by direct, low-power, laser-thermal oxidation in water under common laboratory conditions is demonstrated. Local heating of the metal film enhances the formation of aluminum oxide (hydrargillite, Al2O3–3H2O) and provokes breakdown of the passivation layer followed by local corrosion at temperatures close to the boiling point of water. Moving the focus of an Ar-ion laser (λ=488 nm) over the aluminum film with a speed of several μm/s yields grooves flanked by hydrargillite. Upon through oxidation of the metal these structures act as electrically insulating domains. Depending on the film thickness, the minimum width of the line structures measures between 266 nm and 600 nm. The required laser irradiation power ranges from 1.7 mW to 30 mW. It is found that the photo-thermal oxidation process allows for writing of two-dimensional electrode patterns. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 2 October 2001  相似文献   

18.
2 Cu3O7-δ films have been patterned by means of an arrangement employed in scanning near-field optical microscopy (SNOM). Standard SNOM probes were modified to achieve high transmission for direct writing by oxygen depletion in N2 atmosphere. The written lines are about 1.5 μm wide and show a semiconductor-like resistivity behavior (δ≥0.5). The morphology of illuminated regions is about the same as that of the YBCO films. Received: 3 July 1998/Accepted: 6 July 1998  相似文献   

19.
Sub-ps laser microstructuring of soft X-ray Mo/Si multilayer gratings   总被引:1,自引:0,他引:1  
The sub-picosecond laser microstructuring of multilayer gratings is presented in this paper. A micromachining system operating with a 0.5 ps KrF laser at 248 nm was used to etch grating structures with a groove width of 1–2 μm in Mo/Si and Si/Mo multilayers. Atomic force microscopy, scanning electron microscopy and X-ray reflectivity were used to characterize the microetched patterns. The ω-scans around the 1st Bragg maximum show symmetric satellites up to 3rd order, with positions corresponding to the grating period. The use of sub-picosecond laser pulses minimizes the thermally affected zone and enhances the quality of the etched features. Short pulse laser processing is advantageous for the fabrication of high spatial resolution microstructures required in X-ray optics. Received: 21 May 2002 / Accepted: 19 August 2002 / Published online: 15 January 2003 RID="*" ID="*"Corresponding author. Email: dpapa@iesl.forth.gr  相似文献   

20.
In order to increase the soft X-ray conversion efficiency for the femtosecond-laser-produced plasma, we adopted a nanocylinder-array structure target. Gold nanocylinder-array targets with 70–90 nm cylinder diameter and 100 nm cylinder pitch were made. A continuous smooth soft X-ray spectrum adequate for X-ray absorption spectroscopy was obtained. An around 20-fold soft X-ray (7–20 nm) fluence enhancement compared with a flat-surface gold foil target was obtained when the cylinder height was 18 μm. X-ray (>0.06 keV) pulse duration was 17 ps, which is much shorter than that obtained by using the pre-pulse technique. The X-ray pulse peak intensity was 7-fold higher than that of a gold foil target. Received: 2 May 2001 / Revised version: 1 June 2001 / Published online: 18 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号