首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Isothermal three-phase equilibria of gas, aqueous, and hydrate phases for the {xenon (Xe) + cyclopropane (c-C3H6)} mixed-gas hydrate system were measured at two different temperatures (279.15 and 289.15) K. The structural phase transitions from structure-I to structure-II and back to structure-I, depending on the mole fraction of guest mixtures, occur in the (Xe + c-C3H6) mixed-gas hydrate system. The isothermal pressure–composition relations have two local pressure minima. The most important characteristic in the (Xe + c-C3H6) mixed-gas hydrate system is that the equilibrium pressure–composition relations exhibit the complex phase behavior involving two structural phase transitions and two homogeneous negative azeotropes. One of two structural phase transitions exhibits the heterogeneous azeotropic-like behavior.  相似文献   

2.
Binary (vapour + liquid) equilibrium data were obtained for the {1,1-difluoroethane (HFC-152a) + n-butane (HC-600)} system at temperatures from 313.15 K to 363.15 K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by Peng–Robinson equation of state using the Wong–Sandler mixing rules. This system shows positive azeotropic phase behaviour.  相似文献   

3.
The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.  相似文献   

4.
Binary (vapour + liquid) equilibrium data were measured for the {carbon dioxide + pentafluoroethane (HFC-125)} system at temperatures from 313.15 K to 333.15 K and the {carbon dioxide + dodecafluoro-2-methylpentan-3-one (NOVEC™1230)} system at temperatures from 313.15 K to 343.15 K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by the Peng–Robinson equation of state using the Wong–Sandler mixing rules.  相似文献   

5.
Isothermal (vapour + liquid) equilibrium data were measured for the {1,1,1-trifluoroethane (HFC-143a) + isobutene} as an alternative refrigerant in the temperature range from (273.15 to 348.15) K at 15 K intervals. A circulating-type apparatus with on-line gas chromatography was used in these experiments. The experimental data were correlated well by Peng–Robinson equation of state using the Wong–Sandler mixing rules.  相似文献   

6.
A calorimetric technique is described for measuring the enthalpy of dissociation liberated from solid hydrates. In this study, the enthalpies of dissociation were determined at T =  273.65 K andp =  0.1 MPa for simple and mixed hydrates of carbon dioxide, nitrogen, (carbon dioxide  +  nitrogen), and (carbon dioxide  +  nitrogen  +  tetrahydrofuran) using an isothermal microcalorimeter. The addition of tetrahydrofuran (THF) promoted hydrate stability and increased the number of guest molecules encaged in the small and large cavities of the hydrate lattice, resulting in lower enthalpy of dissociation, compared with structure II hydrate. The composition ratio of guest molecules did not affect the enthalpy of dissociation, which was found to be nearly constant for the same mixture.  相似文献   

7.
(Vapour + liquid) equilibrium (VLE) data for the binary systems of {1,1,2,2-tetrafluoroethane (R134) + propane (R290)} and {1,1,2,2-tetrafluoroethane (R134) + isobutane (R600a)} were measured with a recirculation method at the temperatures ranging from (263.15 to 278.15) K and (268.15 to 288.15) K, respectively. All of the data were correlated by the Peng–Robinson (PR) equation of state (EoS) with the Huron–Vidal (HV) mixing rules utilizing the non-random two-liquid (NRTL) activity coefficient model. Good agreement can be found between the experimental data and the correlated results. Azeotropic behaviour can be found at the measured temperature ranges for these two mixtures.  相似文献   

8.
The thermal properties of {tetra-n-butylammonium bromide + tetra-n-butylammonium chloride (TBAB + TBAC)} mixed semiclathrate hydrates prepared from aqueous solutions were investigated by dissociation temperature measurements and differential scanning calorimetry (DSC). The maximum dissociation temperature of the mixed hydrate crystals at 0.1 MPa is 288.5 K for xTBAB = 0.2 {mole fraction of TBAB to (TBAB + TBAC)}, which is higher than that of the pure hydrates {T = (285.5 and 288.2) K for TBAB and TBAC hydrates, respectively}. In addition, the dissociation enthalpies of the mixed hydrates are higher than those of the pure hydrates {(5.55 ± 0.06) kJ  mol−1 H2O for pure TBAB hydrate and (5.30 ± 0.05) kJ  mol−1 H2O for pure TBAC hydrate}, with a maximum of (5.95 ± 0.12) kJ  mol−1 H2O recorded at approximately xTBAB = 0.4. It was therefore suggested that the crystal distortion in (TBAB + TBAC) mixed hydrates, caused by replacing water molecules by both bromide and chloride anions, was smaller than that observed for each pure hydrate. Consequently, the hydration numbers in the mixed hydrates were hypothesized to be slightly higher than those of the pure hydrates.  相似文献   

9.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

10.
Vapour pressures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane, or tetrachloroethene) at nine temperatures between T = 283.15 K and T = 323.15 K were measured by a static method. The reduction of the vapour pressures data to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich–Kister polynomial according to Barker’s method. Excess molar volumes were also measured at T = 298.15 K. A comparative analysis about the thermodynamic behaviour of both systems is performed, in terms of hydrogen bonding and electron-donor–acceptor interactions, as well as the resonance effect in tetrachloroethene.  相似文献   

11.
The molar isobaric heat capacities of (methanol + 1-hexyl-3-methylimidazolium tetrafluoroborate) and (methanol + 1-methyl-3-octylimidazolium tetrafluoroborate) mixtures have been determined over the temperature range from 283.15 K to 323.15 K within the whole composition range. The excess molar heat capacities of investigated mixtures have been fitted to the Redlich–Kister equation at several selected temperatures. Positive deviations from the additivity of molar heat capacities have been observed in both examined systems. The results obtained have been discussed in terms of molecular interactions in binary mixtures.  相似文献   

12.
Comprehensive studies on semi-clathrate hydrates phase equilibria are still required to better understand characteristics of this type of clathrates. In this communication, new experimental data on the dissociation conditions of semi-clathrate hydrates of {carbon dioxide + tetra-n-butyl-ammonium bromide (TBAB)} aqueous solution are first reported in a wide range of TBAB concentrations and at different pressures and temperatures. A thermodynamic model is then proposed to predict the dissociation conditions of the semi-clathrate hydrates for the latter system. The (hydrate + TBAB) aqueous solution (H + Lw) phase equilibrium prediction is considered based on Gibbs free energy minimization approach. A modified van der Waals–Platteeuw solid solution theory developed based on the (H + Lw) equilibrium information is employed to predict the dissociation conditions of semi-clathrate hydrates of carbon dioxide + TBAB. The properties of the aqueous solution are estimated using the AMSA-NRTL electrolyte model (considering the association and hydration of ions). The Peng–Robinson equation of state is used for estimating the gas/vapour phase properties. Results show that the proposed model satisfactorily predicts the experimental values with an average absolute relative deviation of approximately 13%.  相似文献   

13.
The four-phase equilibrium conditions of (vapor + liquid + hydrate + ice) were measured in the system of (CO2 + 2,2-dimethylbutane + water). The measurements were performed within the temperature range (254.2 to 270.2) K and pressure range (0.490 to 0.847) MPa using an isochoric method. Phase equilibrium conditions of hydrate formed in this study were measured to be at higher temperatures and lower pressures than those of structure I CO2 simple hydrate. The largest difference in the equilibrium pressures of structure I CO2 hydrate and the hydrate formed in the present study was 0.057 MPa at T = 258.3 K. On the basis of the four-phase equilibrium data obtained, the quintuple point for the (ice + structure I hydrate + structure H hydrate + liquid + vapor) was also determined to be T = 266.4 K and 0.864 MPa. The results indicate that structure H hydrate formed with CO2 and 2,2-dimethylbutane is stable exclusively at the temperatures below the quintuple temperature.  相似文献   

14.
The three-phase equilibrium conditions of ternary (hydrogen + tert-butylamine + water) system were first measured under high-pressure in a “full view” sapphire cell. The tert-butylamine–hydrogen binary hydrate phase transition points were obtained through determining the points of intersection of three phases (H–Lw–V) to two phases (Lw–V) experimentally. Measurements were made using an isochoric method. Firstly, (tetrahydrofuran + hydrogen) binary hydrate phase equilibrium data were determined with this method and compared with the corresponding experimental data reported in the literatures and the acceptable agreements demonstrated the reliability of the experimental method used in this work. The experimental investigation on (tert-butylamine + hydrogen) binary hydrate phase equilibrium was then carried out within the temperature range of (268.4 to 274.7) K and in the pressure range of (9.54 to 29.95) MPa at (0.0556, 0.0886, 0.0975, and 0.13) mole fraction of tert-butylamine. The three-phase equilibrium curve (H + Lw + V) was found to be dependent on the concentration of tert-butylamine solution. Dissociation experimental results showed that tert-butylamine as a hydrate former shifted hydrate stability region to lower pressure and higher temperature.  相似文献   

15.
Surface tensions at the temperatures of (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and isothermal (vapour + liquid) equilibrium at the temperatures of (288.15, 298.15, and 308.15) K of n-hexane with 1-chlorobutane or 1-chloropentane mixtures have been measured. Surface tension measurements were carried out with a drop volume tensiometer while the (vapour + liquid) equilibrium was obtained using an all-glass dynamic recirculating type still. Several bulk thermodynamic properties of the studied mixtures have been used together with the experimental measurements to analyse the results. Furthermore, a thermodynamic study of surface formation, including interesting properties such as excess surface compositions and excess properties of surface formation, is also presented.  相似文献   

16.
The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than ±5 mK, ±0.0005 MPa, and ±0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng–Robinson equation of state (PR EoS) incorporating the Huron–Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.  相似文献   

17.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   

18.
Solubility isotherms of the ternary system (LiCl + CaCl2 + H2O) were elaborately determined at T = (283.15 and 323.15) K. Several thermodynamic models were applied to represent the thermodynamic properties of this system. By comparing the predicted and experimental water activities in the ternary system, an empirical modified BET model was selected to represent the thermodynamic properties of this system. The solubility data determined in this work at T = (283.15 and 323.15) K, as well as those from the literature at other temperatures, were used for the model parameterization. A complete phase diagram of the ternary system was predicted over the temperature range from (273.15 to 323.15) K. Subsequently, the Gibbs free energy of formation of the solid phases CaCl2 · 4 H2O(s), CaCl2 · 2 H2O(s), LiCl · 2H2O(s), and LiCl · CaCl2 · 5H2O(s) was estimated and compared with the literature data.  相似文献   

19.
Oxygenates are used in gasoline to increase the octane number and reduce carbon monoxide emission. 2-methoxy-2,4,4-trimethylpentane (TOME) is a tertiary ether which can potentially be used in addition with current oxygenates. This compound can be produced by etherification of diisobutylene with methanol. During the etherification, water is formed due to the dehydration of methanol. The appearance of water can cause (liquid + liquid) phase split in the production process. In this work, several physical properties of systems containing water, methanol and TOME are studied for the first time. The liquid density of 2-methoxy-2,4,4-trimethylpentane is presented from T = (298.15 to 408.16) K. Excess enthalpies are reported for the binary system of (methanol + 2-methoxy-2,4,4-trimethylpentane) at (T = 298.15 K). The (liquid + liquid) equilibrium (LLE) for (water + 2-methoxy-2,4,4-trimethylpentane) from T = (283.15 to 318.15) K is determined. The LLE is also reported for the ternary system of (water + methanol + 2-methoxy-2,4,4-trimethylpentane) at T = (283.15 and 298.15) K. The UNIQUAC parameters were regressed to model VLE, excess enthalpy and LLE for the binary and ternary data with one set of parameters.  相似文献   

20.
The measurement of excess enthalpies, HE, at T=298.15 K and densities at temperatures between 283.15 K and 313.15 K are reported for the (2-methoxyethanol + 1,4-dioxane) and (1,2-dimethoxyethane + benzene) systems. The values of HE and the excess volumes, VE, are positive, and the temperature dependence of VE is quite small for (2-methoxyethanol + 1,4-dioxane). The (1,2-dimethoxyethane + benzene) system shows a negative HE and sigmoid curves in VE, which change sign from positive to negative with an increase in 1,2-dimethoxyethane. The temperature dependence of VE for this system is negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号