首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
超导电缆作为高温超导技术电力应用的一个主要发展方向,由于其低损耗、大容量、无污染等优点受到越来越多的关注.本文提供了一组比较超导电缆和传统电缆生命周期费用的计算模型,根据该组模型可以对制冷机价格、超导电缆费用、制冷机效率、电缆负荷状态等因素如何影响超导电缆生命周期费用进行分析,为高温超导的产业化发展提供方向.文章最后给出一组超导电缆与传统电缆的比较实例,  相似文献   

2.
中国第一组超导电缆并网运行试验   总被引:1,自引:0,他引:1  
中国第一组超导电缆于2004年4月19日在昆明普吉220kV变电站并网成功,并开始向用户供电.本文详细地描述了该电缆并网前后部分试验,如:超导电缆直流电阻测量、超导电缆通流试验、温度、压力和流量的在线监测、绝缘电阻和介损损耗测试等.所有试验结果均显示该电缆技术指标达到实际并网运行要求.超导电缆并网运行成功,标志着我国已经掌握了超导电缆开发能力.本文所提出的超导电缆并网运行试验方法和试验结果为我国进一步开发超导电缆提供了宝贵的经验.  相似文献   

3.
冷绝缘超导电缆的结构及技术简介   总被引:1,自引:0,他引:1  
超导电缆具有传输容量大、传输损耗低、占用通道小和环境友好等特性,备受电力行业的关注.随着超导电缆技术的不断进步,它将很有可能在未来电网的主干线路、城市电力负荷集中区、大型工矿厂区等电能传输密集的线路中得到广泛应用.冷绝缘是超导电缆的一种结构形式,在交流电传输上具有一定的优势.目前,冷绝缘超导电缆在国际上有多个已完成和进行中的示范性项目,是超导电缆技术发展的一个重要方向.本文介绍了冷绝缘超导电缆的基本结构,与热绝缘超导电缆的区别,并根据10kV/1500A单相冷绝缘超导电缆的研发实践,对其制作技术进行简要介绍.  相似文献   

4.
超导电缆的性能检测方法研究   总被引:1,自引:0,他引:1  
超导电缆与常规电缆在电磁特性上有很大差异。因此,有必要对其试验内容、性能检测方法和试验设备进行研究和规范。文中从超导电缆的电磁特性出发,探讨了超导电缆的试验内容及性能检测方法,并重点介绍了超导电缆交流损耗的测量方法。  相似文献   

5.
中国第一组超导电缆于2004年4月19日在昆明普吉220kV变电站并网成功,并开始向用户供电.本文详细地描述了该电缆并网前后部分试验,如:超导电缆直流电阻测量、超导电缆通流试验、温度、压力和流量的在线监测、绝缘电阻和介损损耗测试等.所有试验结果均显示该电缆技术指标达到实际并网运行要求.超导电缆并网运行成功,标志着我国已经掌握了超导电缆开发能力.本文所提出的超导电缆并网运行试验方法和试验结果为我国进一步开发超导电缆提供了宝贵的经验.  相似文献   

6.
多层导体超导电缆的交流输电特性   总被引:1,自引:0,他引:1  
在完成设计和制造我国第一组并网运行的超导电缆系统的工作中,我们对不同结构的超导电缆短样样品的交流载流特性进行了系统的研究,内容包括层电流均流特性、电缆失超特性、失超恢复特性、电缆载流能力和抗短路冲击能力等.结果表明,对多层螺旋导体结构的超导电缆,影响其输运电流在各导体层分布的主要因素是邻近效应.由于其零电阻特性,在相同的结构中,超导体表现出比常规导体大得多的临近效应.显著的邻近效应使多层导体结构的超导电缆的均流问题变得更加复杂.此类超导电缆有很强的抗短路电流冲击能力,能够承受高于额定电流20倍以上的短路电流,并且有很好的超导性能恢复能力.由于交流超导电缆的电压与电流相位差对电阻的变化非常敏感,所以可以被用作判断失超的预警参数用来避免热溃式失超的发生.  相似文献   

7.
大型超导磁体系统中,需要用超导接头来连接超导电缆的终端,其承担的主要作用是连接超导电缆并确保超导电缆的超导性能不因接头而降低,因此需要超导接头电阻足够小,不影响超导电缆的整体性能。影响超导接头电接触性能的主要工艺步骤有超导接头终端处理、接头盒压力密封焊。基于ITER Feeder系统中双盒搭接接头焊接工艺中单个盒体和双盒之间的焊接进行热分析,使用ANSYS分析软件,得到相应的焊接温度分布情况,为焊接工艺中加热方式和加热功率的确定提供了理论基础,验证了相关的设计参数。  相似文献   

8.
超导电缆接头是超导磁体的关键部件之一,其性能直接影响超导磁体的运行稳定性。通过对超导电缆接头的直流特性分析,可以比较全面详实的了解接头中电流的分布规律,并据此设计超导接头的最佳连接方式和尺寸。分析采用的软件是OPERA 13.0,建立并计算了超导接头全尺寸简化模型、1/33分段股线模型和1/33分段单侧股线模型,3类共计48个模型。在以减少超导接头引起的电缆载流能力损失,即做到各股线电阻的尽可能一致,并将接头整体电阻控制在nΩ级为目标,通过48个模型的计算结果,确定了中空超导电缆接头的最佳几何参数,分析了影响接头电流分布的关键因素。  相似文献   

9.
信赢  龚伟志  王洋  张永 《低温物理学报》2005,27(Z1):1121-1128
在完成设计和制造我国第一组并网运行的超导电缆系统的工作中,我们对不同结构的超导电缆短样样品的交流载流特性进行了系统的研究,内容包括层电流均流特性、电缆失超特性、失超恢复特性、电缆载流能力和抗短路冲击能力等.结果表明,对多层螺旋导体结构的超导电缆,影响其输运电流在各导体层分布的主要因素是邻近效应.由于其零电阻特性,在相同的结构中,超导体表现出比常规导体大得多的临近效应.显著的邻近效应使多层导体结构的超导电缆的均流问题变得更加复杂.此类超导电缆有很强的抗短路电流冲击能力,能够承受高于额定电流20倍以上的短路电流,并且有很好的超导性能恢复能力.由于交流超导电缆的电压与电流相位差对电阻的变化非常敏感,所以可以被用作判断失超的预警参数用来避免热溃式失超的发生.  相似文献   

10.
11.
氧化物高温超导体Tc与内层轨道关联的关系研究   总被引:2,自引:0,他引:2  
陈宁  汪纯  陈志 《低温物理学报》2003,25(3):229-234
通过研究7大类40多个铜氧化物超导体系中Cu-O面最近邻阳离子(A),我们发现了一个重要的规律——所有的A的内层p能级都与O的内层2s能级(-29.16eV)非常接近,分布在从-22.85~-3_4.80eV之间的一个窄小的区域内,而且此区域内没有任何非超导原子的p能级.详细的电子结构计算表明,所有的A的次内层p轨道都与Cu-O面上的O的内层2s轨道之间存在着轨道耦合关联,而且内层的关联强度与该体系的最高临界温度(Tc)成正比,关联强度越大,瓦越高.因此我们认为:A与O间的内层轨道耦合是高温超导现象产生的主要原因.  相似文献   

12.
本文研究了Nb片和Ti片在不同温度下的扩散行为,并利用Nb片和Ti片交替组配加工,经过扩散反应制备出了NbTi超导线.运用扫描电镜(SEM)观察了Nb/Ti界面的扩散形态及微结构,并对热处理工艺的合理选择进行了讨论.结果表明:经800℃,5小时扩散可得到厚度最大,Ti含量最高的NbTi超导相.该工艺制备出的NbTi超导线材的临界电流密度Jc可达到2800A/mm2(5T、4.2K)和4200A/mm2(3T、4.2K),与传统工艺制备出的超导体的性能相当.  相似文献   

13.
本文研究了Nb片和Ti片在不同温度下的扩散行为,并利用Nb片和Ti片交替组配加工,经过扩散反应制备出了NbTi超导线.运用扫描电镜(SEM)观察了Nb/Ti界面的扩散形态及微结构,并对热处理工艺的合理选择进行了讨论.结果表明:经800℃,5小时扩散可得到厚度最大,Ti含量最高的NbTi超导相.该工艺制备出的NbTi超导线材的临界电流密度Jc可达到2800A/mm^2(5T、4.2K)和4200A/mm^2(3T、4.2K),与传统工艺制备出的超导体的性能相当.  相似文献   

14.
超导体MgB2的制备和热电势研究   总被引:5,自引:0,他引:5  
利用Mg扩散法制备出单相多晶的MgB2超导体,其超导转变的零电阻温度为38.5K左右,转变宽度小于1K,比较了不同制备工艺对样品的密度和电阻率等的影响,进行了热电势温度关系的测量,正常态电阻率温度关系均为金属型,可用函数a bT^n拟合,n-2.4热电势研究表明其载流子为空穴型的,由其斜率估算的费米能为0.39eV。  相似文献   

15.
高温超导体的磁化与磁滞损耗   总被引:1,自引:0,他引:1       下载免费PDF全文
胡立发  周廉  张平祥  王金星 《物理学报》2001,50(7):1359-1365
利用三种临界态模型(Bean模型、Kim模型和指数模型),采用比较简单的方法,以Bi2223高温超导体为例,给出了平板状超导体的初始磁化曲线和磁滞回线的解析表达式.对不同温度和磁场下的磁化强度进行了编程计算,对计算结果进行讨论.利用推导的公式,讨论了温度和外加磁场对高温超导体的磁滞损耗的影响. 关键词: 磁滞损耗 磁通钉扎 高温超导体 临界态模型  相似文献   

16.
YBCO超导块的磁浮力及其测量   总被引:16,自引:1,他引:15  
磁浮力F是块状YBCO超导体重要的实用参数之一,其数值大小不仅依赖材料自身的性质,而且与测量条件有关.实验结果表明,磁浮力随单畴超导块直径的增加而增大,且明显地受测试用永久磁铁表磁强度Bs及其分布的影响,最大磁浮力F0与B2s成比例.观察到磁浮力随致冷剂温度的升高而降低,随时间对数衰减.另外,磁浮力的测量值还和超导块与永久磁铁的尺寸搭配有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号