首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The flow in the boundary layer in the vicinity of the stagnation point of a flat plate is examined. The outer stream consists of turbulent flow of the jet type, directed normally to the plate. Assumptions concerning the connection between the pulsations in velocity and temperature in the boundary layer and the average parameters chosen on the basis of experimental data made it possible to obtain an isomorphic solution of the boundary layer equations. Equations are obtained for the friction and heat transfer at the wall in the region of gradient flow taking into account the effect of the turbulence of the impinging stream. It is shown that the friction at the wall is insensitive to the turbulence of the impinging stream, while the heat transfer is significantly increased with an increase in the pulsations of the outer flow. These properties are confirmed by the results of experimental studies [1–4].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 83–87, September–October, 1973.  相似文献   

2.
The investigation of three-dimensional flows in boundary layers is important to determine the aerodynamic characteristics of wings such as the heat fluxes and friction drag. However, the circumstance that interaction of the boundary layer and the wake with an inviscid stream can play a governing role for the formation of the flow diagram as a whole is more important. The three-dimensional flow on a thin delta wing in a hypersonic stream is investigated in this paper. An important singularity of hypersonic flow is the low value of the gas density in the boundary layer as compared with the density on its outer boundary. It is shown that in the general case when the pressure in the wing span direction varies mainly by an order, high transverse velocities originate because of the smallness of the density within the boundary layer. This circumstance permits expansion of the solution for smallspan wings in a series in an appropriate small parameter. The equations in each approximation depend on two variables, while the third—longitudinal—variable enters as a parameter. The zero approximation can be considered as the formulation of the law of transverse plane sections for a three-dimensional boundary layer. As a comparison with the exact solutions calculated for delta wings with power-law distributions of the wing thickness has shown, the first approximation yields a very good approximation. Furthermore, flow modes with a different direction of parabolicity on the whole wing, as well as zones in which interaction with the external stream should absolutely be taken into account, are found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 75–84, March–April, 1976.  相似文献   

3.
G. N. Dudin 《Fluid Dynamics》1982,17(5):693-698
The results are given of the calculation of a three-dimensional boundary layer on a triangular plate of finite length in a regime of strong viscous interaction with an external hypersonic stream for both symmetric flow as well as in the presence of an angle of slip. The influence of the change in the pressure on the trailing edge of the plate on the boundary layer characteristics is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 46–52, September–October, 1982.  相似文献   

4.
A complex flow consisting of an outer inviscid stream, a dead-water separation domain, and a boundary layer, which interact strongly, is formed in viscous fluid flows with separation at the streamlined profile with high Re numbers. Different jet and vortex models of separation flow are known for an inviscid fluid; numerical, asymptotic, and integral methods [1–3] are used for a viscous fluid. The plane, stationary, turbulent flow through a turbine cascade by a constant-density fluid without and with separation from the inlet edge of the profile and subsequent attachment of the stream to the profile (a short, slender separation domain) is considered in this paper.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 34–44, May–June, 1978.  相似文献   

5.
Approximating dependences of the local coefficients of friction, heat transfer, and pressure induced by a boundary layer on the generalized similarity parameters, including the inviscid flow characteristics, are obtained on the basis of the results of a numerical calculation of hypersonic flow past a number of plane and axisymmetric bodies. If the inviscid flow characteristics are known, these relations can be used to take the viscosity approximately into account under conditions of interaction between the laminar boundary layer and the hypersonic inviscid stream [1].Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 142–150, July–August, 1995.  相似文献   

6.
The study considers plane steady flow of an incompressible fluid around a circular cylinder rotating in a homogeneous free stream. On the basis of an asymptotic analysis of the Navier-Stokes equations for high Reynolds numbers, it is shown that at a certain value of the angular velocity of the cylinder an interaction arises between the flow in the boundary layer and the external potential flow. A solution is obtained numerically which describes the flow in the region of interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 36–45, September–November, 1987.  相似文献   

7.
There have been many theoretical studies of aspects of the unsteady interaction of an exterior inviscid flow with a boundary layer [1–9]. The mathematical flow models obtained in these studies by the method of matched asymptotic expansions describe a wide range of phenomena observed experimentally. These include boundary layer separation near the hinge of a flap, the flow in the neighborhood of the trailing edge of an oscillating airfoil [1–2], and the development and propagation of perturbations in a boundary layer excited by an oscillating wall or some other way [3–5]. The present paper studies the interaction of an unsteady boundary layer with a supersonic flow when a small part of the surface of a body in the flow is rapidly heated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–70, January–February, 1984.  相似文献   

8.
The flow pattern near bodies of revolution with very long cylindrical and pointed nose sections is studied in the framework of an ideal gas model by means of a numerical method based on MacCormack's difference scheme. The existence of internal shock waves, oriented in both the longitudinal and the transverse directions, in the shock layer is established. The variation of the aerodynamic coefficients of the configuration with its length, angle of attack, and free stream Mach number is investigated. The calculated and experimental data are compared, and the connection between the flow parameters on the body surface and the position of the separation line of the boundary layer on its lateral face is established. A method of calculating the influence of the boundary layer on the values of the aerodynamic coefficients of bodies of revolution of large aspect ratio at small angles of attack is proposed. Axisymmetric flow near blunt bodies has been studied in detail in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 127–133, September–October, 1986.The author expresses his gratitude to A. N. Pokrovskii for his help in calculating the boundary layer parameters on the surfaces of the considered configurations.  相似文献   

9.
The receptivity of the boundary layer in the neighborhood of the attachment line of a cylinder inclined to the flow with respect to periodic vortex perturbations frozen into the stream is investigated. The problem considered simulates the interaction between external turbulence and the leading-edge swept wing boundary layer. It is shown that if the direction of the external perturbation vector is almost parallel to the leading edge, then the external perturbations are considerably strengthened at the outer boundary layer edge. This effect can cause laminar-turbulent transition on the attachment line at subcritical Reynolds numbers.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 72–85. Original Russian Text Copyright © 2004 by Ustinov.  相似文献   

10.
Investigations of the stability of a subsonic laminar boundary layer have shown that, other things being equal, the stability of the laminar flow is considerably improved by cooling the entire surface of the body to a constant temperature Tw=const lower than the temperature of the free stream [1–3]. This is attributable to an increase in the critical Reynolds number of loss of stability and a decrease in the range of unstable perturbations of the Tollmien-Schlichting wave type when the surface is cooled. Recently, in the course of investigating the stability of laminar flow over a flat plate it was found [4, 5] that a similar improvement in flow stability can be achieved by raising the temperature of a small part of the surface near the leading edge of the plate. In this study we examine the possibility of delaying the transition to turbulent flow by creating a nonuniform temperature distribution along the surface of thin profiles, where the development of an adverse pressure gradient in the outer flow has a destabilizing effect on the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 36–42, September–October, 1986.In conclusion, the authors wish to thank M. N. Kogan for useful discussions of their results.  相似文献   

11.
Similarity solutions of the equations of a laminar incompressible boundary layer, formed in a rotational external flow, are investigated. Such problems arise in the analysis of the flow in a boundary layer when there is an abrupt change in the boundary conditions (for example, in the case of a discrete inflation of the boundary layer, in hypersonic flow about blunt bodies, etc.). Various approaches to their solution have been proposed earlier in [1–4]. Solved below is the so-called inverse problem of boundary layer theory (see [3], p. 200), where the contour of the body that causes a given flow outside the boundary layer is unknown beforehand and is found during the course of solution of the problem in connection with the coupling of the longitudinal and transverse velocity components. The cases of a parabolic (ue ~ y2) and a linear (ue=a(x)+b(x)y) variation in the velocity of the external flow with distance along the transverse direction are considered in detail. The latter includes an investigation of the flow in the neighborhood of the critical point of a blunt body, taking account of the vorticity of the flow in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 78–83, March–April, 1971.  相似文献   

12.
Steady-state viscous incompressible fluid flow past an axisymmetric slender body is considered at high Reynolds numbers in the regime with vanishing surface friction in a certain cross-section. In a small neighborhood of this cross-section interaction between the boundary layer flow and the external irrotational stream develops. In order to study the structure of the three-dimensional flow with local separation zones it is assumed that there is three-dimensional roughness on the surface of the body with the scale of the interaction zone. For this zone a numerical solution of the problem is obtained and its nonuniqueness is established. The surface friction line (limiting streamline) patterns with their inherent features are constructed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–79, May–June, 1995.Thus, on the basis of the asymptotic marginal separation theory it is possible to obtain fairly simple solutions describing flows with a complex surface friction line structure.  相似文献   

13.
In contrast to the well-known solutions in which the condition at the stream boundaries has the same form for all walls of the tunnel, in the present formulation the stream boundaries are divided into sections of two types with different boundary conditions. These conditions are general for any Mach numbers. The plane limiting boundary problem on the subsonic flow over a dipole is solved in elementary functions for the case of small velocity perturbations at the stream boundary and a low perforation factor. The solution obtained, while not coinciding with the solution for the case of unperforated walls everywhere when the perforation factor equals zero, gives a simple rule for allowing for induction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 130–136, November–December, 1977.Deceased.  相似文献   

14.
The variational problem of the shape of a low-aspect-ratio wing with maximum lift-to-drag ratio in a viscous hypersonic stream is formulated with allowance for the flow structure in the thin compressed layer and the state of the boundary layer, and a numerical-analytic solution of the problem is given. The characteristic shapes of optimum wings are obtained together with the corresponding pressure distributions. The bifurcation of the optimum regime with variation of the wing span is found to exist. It is shown that viscosity, when included in the optimization procedure, can result in a change in the optimized wing shape and reduce the maximum lift-to-drag ratio; however, the gain in lift-to-drag ratio, as compared with the limiting Newtonian value, is still quite appreciable.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 154–164, November–December, 1995.  相似文献   

15.
One of the main problems which arise in the design of high-speed aircraft is the protection of the streamline surfaces against the erosion effect of solid particles and drops occurring in the free stream. For this purpose it is possible to use the device of blowing cold gas. This leads to the formation of a boundary layer of high density in which the particles are decelerated [1]. The present study investigates the effectiveness of this method of erosion protection in the example of supersonic flow round a sphere.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 178–181, March–April, 1986.  相似文献   

16.
The flow structure behind the separation point of a laminar boundary layer in a supersonic stream has been investigated. Analytic and numerical solutions are obtained for simple semiinfinite separation zones starting from the leading edge or a point on the smooth surface. The question of the pressure plateau in a separation zone of finite length is discussed and its value is calculated on the basis of asymptotic theory. The asymptotic theory of flow [1, 2] in the neighborhood of the separation point of the laminar boundary layer in a supersonic gas stream (region of free interaction) is employed. The local solution obtained is subsequently used to construct the flow pattern in the separation zone [3]. An analysis is made of the behavior of the solution for the free-interaction region on transition to the region of reverse flows. The results make it possible actually to compute (in the first approximation) the pressure in the plateau region after establishing the mathematical significance of this concept, previously introduced on the basis of the experimental results. At the same time relatively simple solutions are obtained for semiinfinite separation zones.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 19–25, May–June, 1971.  相似文献   

17.
The problem of the three-dimensional incompressible turbulent boundary layer developing ahead of a circular cylinder mounted at right angles on a flat plate is considered. The direction of the uniform approach stream is normal to the leading edge of the plate. The turbulence is simulated by means of five different isotropic algebraic models of eddy viscosity. The boundary layer equations are solved numerically by means of a second-order-accurate implicit finite-difference method. The principal characteristics of the flow obtained on the basis of the turbulence models selected are compared for a free-stream Reynolds number Re = 107.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 36–43, November–December, 1991.  相似文献   

18.
Interaction between boundary layers formed on the walls of a plane symmetric channel is studied when a supersonic perfect-gas stream, homogeneous in the initial cross-section and having a constant specific ratio, flows along the channel at large characteristic Reynolds numbers. In the case under consideration the longitudinal dimension of the interaction zone L coincides in order of magnitude with the channel widthd, i.e., the boundary layers interact as a result of the transfer of a perturbation from one layer to the other through the irrotational flow core.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 131–141, July–August, 1995.  相似文献   

19.
The problem of heat transfer in a turbulent asymptotic boundary layer with suction is solved in the framework of the monoharmonic model. The flow is one dimensional on the average, which is why it is chosen for investigation. The theoretically determined mean and pulsation characteristics of the flow, in particular the turbulent Prandtl number, agree with the experimental results for a boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 74–79, January–February, 1981.  相似文献   

20.
It is known that the longitudinal pressure gradient can exert a strong influence on the friction law and the characteristics of a dynamic turbulent boundary layer. The thermal and diffusion boundary layers are more conservative to the effect of the pressure gradient, and, hence, methods of analyzing them are based, in the majority of cases, on the hypothesis of conservativity of the heat- and mass-transfer laws to the longitudinal pressure gradient [1]. This hypothesis is verified by experimental results [2, 3] on heat transfer on an impermeable surface in a turbulent stream with positive pressure gradient under almost isothermal conditions. However, such investigations under nonisothermal conditions are practically nonexistent. An approximate theoretical analysis of the heat transfer in a turbulent boundary layer of a nonisothermal stream with a positive pressure gradient is given in this paper. Experimental results are presented. The experimental investigation was conducted in a burned-out graphite diffuser both with and without injection of an inert gas through the wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 43–49, July–August, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号