首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This paper investigates the combined effects of using nanofluid, a porous insert and corrugated walls on heat transfer, pressure drop and entropy generation inside a heat exchanger duct. A series of numerical simulations are conducted for a number of pertinent parameters. It is shown that the waviness of the wall destructively affects the heat transfer process at low wave amplitudes and that it can improve heat convection only after exceeding a certain amplitude. Further, the pressure drop in the duct is found to be strongly influenced by the wave amplitude in a highly non-uniform way. The results, also, show that the second law and heat transfer performances of the system improve considerably by thickening the porous insert and decreasing its permeability. Yet, this is associated with higher pressure drops. It is argued that the hydraulic, thermal and entropic behaviours of the system are closely related to the interactions between a vortex formation near the wavy walls and nanofluid flow through the porous insert. Viscous irreversibilities are shown to be dominant in the core region of duct where the porous insert is placed. However, in the regions closer to the wavy walls, thermal entropy generation is the main source of irreversibility. A number of design recommendations are made on the basis of the findings of this study.

  相似文献   

2.

In the present study, the exact solution of a nanofluid flow and mixed convection within a vertical cylindrical annulus with suction/injection, which is adjacent to the radial magnetic field, is presented with regard to the motion of cylinders’ walls. The impact of Brownian motion and shape factor on the thermal state of CuO–water nanofluid is also considered. The influence of such parameters as Hartmann number, mixed convection parameter, suction/injection, volume fraction of nanoparticles and motion of cylinders’ walls on flow and heat transfer is probed. The results show that the shape of the nanoparticles could change the thermal behavior of the nanofluid and when the nanoparticles are used in the shape of a platelet, the highest Nusselt number is obtained (about 2.5% increasement of Nusselt number on internal cylinders’ wall comparison to spherical shape). The results shed light on the fact that if, for example, the external cylinder is stationary and the internal cylinder moves in the direction of z axis, the maximum and minimum heat transfer take place on the walls of internal and external cylinders, respectively (for η?=?300, about 15% increasement of Nusselt number on internal cylinders’ wall). Furthermore, the enhancement of radius ratio between two cylinders increases the rate of heat transfer and decreases the shear stress on the internal cylinder’s wall.

  相似文献   

3.

In this study, heat transfer and entropy generation were investigated in a microchannel containing FMWNT/water nanofluids given the slip condition. The main focus was on utilizing injection technique in the presence of the magnetic field. The injection from the upper high-temperature wall was incorporated into the flow field. Injection at high Reynolds number causes vortex formation, which ultimately reduces local heat transfer in the adjacent injection zone. By applying the magnetic field, the vortex intensity as well as boundary layer thickness was diminished which in turn improved the heat transfer. Based on numerical results, at higher nanoparticle volume fraction, the effect of the magnetic field on heat transfer enhancement was amplified. Moreover, at higher Reynolds numbers, the magnetic field efficacy is more obvious. The highest heat transfer occurred at the highest values of the Hartmann and Reynolds numbers and eventually the nanoparticle volume fraction. Owing to applying the magnetic field on the injectable microchannel containing nanofluid, heat transfer improvement can reach up to 79%. From the second law prospective, the entropy generation intensified by 82.8%.

  相似文献   

4.

The lattice Boltzmann method is used to study natural convection of a CuO/water nanofluid in a hollow cavity. The hollow walls are fixed at a uniform temperature, and the effect of an applied magnetic field is examined. The Koo–Kleinstreuer–Li model, which accounts for nanoparticle’s Brownian motion, is used to gain the nanofluid effective thermal conductivity and nanofluid viscosity. The mechanisms how the inclination angle of magnetic field, Hartmann number, Rayleigh number, hollow width and nanoparticle volume fraction affect the streamlines, isotherms and rate of heat transfer are also studied. The results show that the average Nusselt number is increased by incrementing the nanoparticle volume fraction, Ra, magnetic field inclination angle and hollow width, but decreased by the Ha. For L = 0.4, the value of Ra where the dominant mechanism of heat transfer is changed from conduction to convection is larger than 105. But for L = 0.48 or 0.56, the turning point of the dominant heat transfer mechanism is at Ra < 105. Besides, at L = 0.4 or 0.48, the average Nusselt numbers in hot walls are higher than those in cold wall, but the opposite trend is found at L = 0.56.

  相似文献   

5.

High-performance cooling is of vital importance for the cutting-edge technology of today, from nanoelectronic mechanical systems to nuclear reactors. Advances in nanotechnology have allowed the development of a new category of coolants, termed nanofluids that have the potential to enhance the thermal performance of conventional heat transfer fluids. At the present time, nanofluids are a controversial research theme, since there is yet no conclusive answer to explain the underlying physical mechanisms of heat transfer. The current study investigates experimentally the heat and mass transfer behaviour of dilute Al2O3–H2O nanofluids under turbulent natural convection—Rayleigh number of the order of 109—in a cubic Rayleigh–Bénard cell with optical access. Traditional heat transfer measurements were combined with a velocimetry method to obtain a deeper understanding of the impact of nanoparticles on the heat transfer performance of the base fluid. Particle image velocimetry was employed to quantify the resulting mean velocity field and flow structures in dilute nanofluids under natural convection, at three parallel planes inside the cubic cell. All the results were compared with that for the base fluid, i.e. deionised water. It was observed that the presence of a minute amount of Al2O3 nanoparticles in deionised water, φv =?0.00026 vol.%, considerably modifies the mass transfer behaviour of the fluid in the bulk region of turbulent Rayleigh–Bénard convection. Simultaneously, the general heat transport, as expressed by the Nusselt number, remained unaffected within the experimental uncertainty.

  相似文献   

6.
A mesoscopic study of natural convection due to MWCNT-Fe3O4/Water hybrid nanofluid is conducted utilizing the Lattice Boltzmann Method. The test fluid is filled in a differentially heated rectangular enclosure. Effects of aspect ratio in the range of 0.5–2.0, Rayleigh number varying from 103 to 105 and nanocomposite volume fraction on heat and fluid flow characteristics and entropy generation have been illustrated. It is observed that the mean Nusselt number rises with the increase in Rayleigh number, while it falls as the aspect ratio increases. However, the mean Nusselt number enhances with the increase in MWCNT-Fe3O4 volume fraction up to 0.001. On further increasing the volume fraction, the mean Nusselt number shows either no significant rise or deterioration for the case of MWCNT-Fe3O4 nanocomposite. The dimensionless entropy generation number rises with the increase in the Rayleigh number. However, it falls with an increase in aspect ratio and dimensionless temperature difference. Interestingly in the case of increasing nanoparticle loading fraction, entropy generation number augments first, attains a maximum at 0.001 ?vol fraction of nanocomposite, and then it decreases. Nevertheless, at the low Rayleigh number, it keeps on rising with an increase in nanocomposite volume fraction. The best thermal performance is obtained for the cavity of 0.5 aspect ratio. A correlation for the mean Nusselt number is proposed.  相似文献   

7.
In this paper, the steady electrically conducting hybrid nanofluid (CuO-Cu/blood) laminar-mixed convection incompressible flow at the stagnation-point with viscous and gyrotactic microorganisms is considered. Additionally, hybrid nanofluid flow over a horizontal porous stretching sheet along with an induced magnetic field and external magnetic field effects that can be used in biomedical fields, such as in drug delivery and the flow dynamics of the microcirculatory system. This investigation can also deliver a perfect view about the mass and heat transfer behavior of blood flow in a circulatory system and various hyperthermia treatments such as the treatment of cancer. The simple partial differential equations (PDEs) are converted into a series of dimensional ordinary differential equations (ODEs), which are determined using appropriate similarities variables (HAM). The influence of the suction or injection parameter, mixed convection, Prandtl number, buoyancy ratio parameter, permeability parameter, magnetic parameter, reciprocal magnetic prandtl number, bioconvection Rayleigh number, coupled stress parameter, thermophoretic parameter, Schmidt number, inertial parameter, heat source parameter, and Brownian motion parameter on the concentration, motile microorganisms, velocity, and temperature is outlined, and we study the physical importance of the present problem graphically.  相似文献   

8.
Journal of Thermal Analysis and Calorimetry - The paper presents the mixed convection heat transfer and entropy generation of a nanofluid containing carbon nanotubes, flowing in a 3D rectangular...  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - In this paper, vortex-induced vibration of a circular cylinder with forced convection heat transfer and entropy generation in pulsating...  相似文献   

10.

Nonlinear mixed convection of heat and mass in a stagnation-point flow of an impinging jet over a solid cylinder embedded in a porous medium is investigated by applying a similarity technique. The problem involves a heterogenous chemical reaction on the surface of the cylinder and nonlinear heat generation in the porous solid. The conducted analysis considers combined heat and mass transfer through inclusions of Soret and Dufour effects and predicts the velocity, temperature and concentration fields as well as the average Nusselt and Sherwood number. It is found that intensification of the nonlinear convection results in development of higher axial velocities over the cylinder and reduces the thickness of thermal and concentration boundary layers. Hence, consideration of nonlinear convection can lead to prediction of higher Nusselt and Sherwood numbers. Further, the investigation reveals that the porous system deviates from local thermal equilibrium at higher Reynolds numbers and mixed convection parameter.

  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - In this paper, we present a numerical investigation of natural convection heat transfer and entropy generation for a rhombic enclosure with inclination...  相似文献   

12.

In this study, the energetic and exergetic analysis of a multi-effect desalination system with a thermal vapor compression desalination system has been numerically evaluated. For this purpose, the mass, energy, and exergy balance equations for the thermo-compressor, first effect as well as middle effects, and condenser have been developed. The effects of motive steam pressure and number of effects on yield, gained output ratio (GOR), performance ratio (PR) and irreversibility have been examined. Nanoparticles were used to improve the heat transfer properties at different stages. The highest rate of exergy destruction with 61.67% is concerned with thermo-compressor, owing to the large difference between the motive steam pressure and the entrained steam. The lowest exergy losses rate among the various components was 4.89% for the condenser, due to the fact that much of the final distillate steam entrained the thermo-compressor. As the number of effects increased from 1 to 7, the yield, GOR as well as PR, improved by approximately 590% and the irreversibility reduced by 1.88%. As the motive steam pressure increased from 400 to 1290 kPa, the yield decreased by 25.45% while the GOR and PR improved by 12.62 and 14.8%, respectively. From the second law viewpoint, irreversibility intensified by 16.11% which in turn diminished the second efficiency by 3.17%.

  相似文献   

13.

Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, φ, from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.

  相似文献   

14.

This investigation addresses bioconvection of oxytactic microorganisms in a porous square enclosure by thermal radiation impact. The bioconvection flow and heat transfer in porous media are formulated based on Darcy model of Boussinesq approximation. Appropriate transformations lead to the non-dimensionalized governing partial differential equations. Galerkin finite element method for the resulting equations is computed. The role of relevant parameters on the streamlines, isotherms, isoconcentrations of oxygen and microorganisms and average Nusselt number is analysed in the outputs. It is revealed that the flow intensity of bioconvection is pronounced with larger Rayleigh number and reduced with radiation parameter. Furthermore, the temperature distribution is affected significantly with Rayleigh number. Radiation parameter serves to fasten the heat transfer in the enclosure. Oxygen density is enhanced with Rayleigh number and radiation parameter. The profile of motile isoconcentrations is boosted with Rayleigh number. The stability of microorganisms is improved with the radiation parameter.

  相似文献   

15.

In this paper, we analyze the effect of heat transfer on the flow of tangent hyperbolic nanofluid in a ciliated tube (fallopian tube where embryo in blood make the development). This study will be beneficial for the researchers and medical experts in the field of embryology. The nanoparticles are beneficial to remove the cysts from the fallopian tube where development of embryo takes place. To resolves the ciliary flow problems, medical doctors use nanoparticles (drug delivery) that may create a temperature gradient. The heat transfer helps to optimize the energy for which the entropy generation is reduced. Therefore, in this research we discuss the heat transfer effect on tangent hyperbolic nanofluid and entropy generation due to ciliary movement. The governing partial differential equations are solved by HPM and software MATHEMATICA?. Effect of viscoelastic parameter, nanoparticles, cilia length and Brinkman number on the velocity, temperature and entropy generation has been illustrated with the help of graphs. Graphical results show that thermal conductivity of fluid increases by adding nanoparticles. The entropy generation due to nanoparticles will decrease the viscosity near the tube wall and blood through tube will flow with normal pressure.

  相似文献   

16.

Entropy generation analysis for the Cu–water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000–15,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it decreases with increasing the nanoparticle volume fraction. Frictional entropy generation reduces with increasing the number of holes from 4 to 10. This is because of stronger velocity gradient near the perforated holes. Bejan number decreases with augment of Reynolds number.

  相似文献   

17.
Journal of Thermal Analysis and Calorimetry - In this work, the influences of heat generation/absorption and nanofluid volume fraction on the entropy generation and MHD combined convection heat...  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - In the present paper, mixed convection heat transfer of water–Al2O3 nanofluid in the space between two cylinders is investigated numerically. The...  相似文献   

19.

An innovative study on liquid hydrogen diffusion in time-dependent mixed convection flow is carried out in the presence of magnetic field effects. In fact, this is the first approach to analyze such flow problems, and also this is the first research paper to study the non-uniform heat sink/source and nonlinear chemical reaction in the presence of liquid hydrogen diffusion. Initially, the governing equations are reduced to dimensionless form by using non-similar transformations and are linearized by applying quasilinearization technique. Then, the finite difference approximation is utilized to discretize the resulting equations. The mixed convection is analyzed along with exponentially stretching surface through various graphs on profiles as well as gradients. The results display that the non-uniform heat source parameter increases the fluid velocity as well as temperature, and the magnetic parameter reduces the friction at the wall. Specifically, the skin friction coefficient decreases about 40% in the presence of magnetic field. The mass transfer rate increases for high-order chemical reaction and for destructive chemical reaction rate. The mass transfer rate is found to be high for the diffusion of liquid nitrogen than that for the diffusion of liquid hydrogen. In fact, the mass transfer rate increases about 22% for the diffusion of liquid nitrogen. This study can assist the design engineers who are working in pertain to the diffusion of liquid gases in mixed convection regimes. Also, the obtained data in the present study can be more useful for future investigations about time-dependent mixed convection nanofluid flow problems.

  相似文献   

20.
The effect of magnetic field on natural convection heat transfer in an L-shaped enclosure filled with a non-Newtonian fluid is investigated numerically. The governing equations are solved by finite-volume method using the SIMPLE algorithm. The power-law rheological model is used to characterize the non-Newtonian fluid behavior. It is revealed that heat transfer rate decreases for shear-thinning fluids (of power-law index, n?<?1) and increases for shear-thickening fluids (n?>?1) in comparison with the Newtonian ones. Thermal behavior of shear-thinning and shear-thickening fluids is similar to that of Newtonian fluids for the angle of enclosure α?<?60° and α?>?60°, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号