首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this study, CaCl2·6H2O/expanded graphite (EG) composite was prepared as a novel form-stable composite phase change material (PCM) through vacuum impregnation method. CaCl2·6H2O used as the PCM was dispersed by surfactant and then, was absorbed into the porous structure of the EG. The surfactant was used to enhance the bonding energy between CaCl2·6H2O and EG, which fulfilled the composites with good sealing performance and limited the leakage of the inside CaCl2·6H2O. Differential scanning calorimetry and thermal gravimetric analysis show that all the composite PCMs possess good thermal energy storage behavior and thermal stability. Thermal conductivity measurement displays that the conductivities of the samples have been significantly improved due to the highly thermal conductive EG. The thermal conductivity of the sample including 50 mass% CaCl2·6H2O (8.796 W m?1 K?1) is 14 times as that of pure CaCl2·6H2O (0.596 W m?1 K?1). Therefore, the obtained composite PCMs are promising for thermal energy storage applications.  相似文献   

2.
Form-stable phase change materials (PCMs) with high thermal conductivity are essential for thermal energy storage systems, which in turn are indispensible in solar thermal energy applications and efficient use of energy. In this paper, a new palmitic acid (PA)/polyaniline (PANI) form-stable PCMs were prepared by surface polymerization. The highest loading of PA in the form-stable PCMs was 80 mass% with the phase change enthalpy (ΔH melting) of 175 J g?1. Copper nanowires (Cu NWs) were introduced to the form-stable PCM by mixing the Cu NWs with PA and ethanol prior to the emulsifying of PA in surfactant solution. The Cu NWs would remain intact in case the ethanol was eliminated before the PA/Cu NWs mixture was mixed with surfactant solution. Otherwise, the Cu NWs would be partially oxidized under the attack of ethanol and ammonium persulfate. The ΔH melting of the form-stable PCMs containing Cu NWs decreased linearly with the increasing of Cu NWs loading. The ΔH melting of the form-stable PCMs doped with 11.2 mass% Cu NWs was 149 J g?1. The thermal conductivity of the form-stable PCMs could be effectively improved by Cu NWs. By adding 11.2 mass% Cu NWs, the thermal conductivity of the form-stable PCM could attain 0.455 W m?1 K?1.  相似文献   

3.
Expanded graphite (EG)/paraffin/organic montmorillonite (OMMT) composite phase change material (PCM) was prepared by using melt intercalation method. The microstructure of EG/paraffin/OMMT is observed by scanning electron microscope (SEM). The thermal properties are investigated by differential scanning calorimetry (DSC). The mass loss of EG/paraffin/OMMT after 50 heating cycles was measured for investigating the influence of EG and OMMT on the thermal properties of paraffin. The results show that EG and OMMT have the ability of adsorption and shape-stability. The melting point EG/paraffin/OMMT is decreased slightly with an addition of paraffin and the latent heat of EG/paraffin/OMMT is determined by the mass ratio of paraffin. The heat transfer efficiency of EG/paraffin/OMMT is strengthened and the heating time is decreased to one-sixth of that of paraffin by addition of EG and OMMT. The thermal stability of EG/paraffin/OMMT is improved by addition of OMMT.  相似文献   

4.
The objective of this study was to explore an innovative type of form-stable phase-change materials (PCMs) with flexible cellulose acetate (CA) nano-fibrous felts (nano-felts) absorbed with capric–myristic–stearic acid ternary eutectic mixture for thermal energy storage/retrieval. Capric–myristic–stearic acid (CMS) ternary eutectic mixture as model PCM was firstly prepared. The developed CA nano-felts as supporting material was mechanically flexible and was made from CA/polyvinylpyrrolidone (PVP) precursor composite nanofibers followed by removal of PVP components. The effects of original mass ratio of CA/PVP on absorption capacities of CA nano-felts were studied. The modified CA nano-felts with groove/porous structure and rough surfaces were capable of absorbing a large amount of PCMs. The morphological structures, as well as the properties of thermal energy storage, thermal stability and reliability, and thermal insulation of composite PCMs were characterized by scanning electron microscopy, differential scanning calorimetry, and thermal performance measurement, respectively. The results showed that CMS eutectic was absorbed in and/or supported by modified CA nano-felts. The heat enthalpy values of composite PCMs have slightly decreased in comparison with the corresponding theoretical values. The composite PCMs demonstrated good thermal stability and reliability after thermal cycles. The composite PCMs had high thermal insulation capability for temperature regulation.  相似文献   

5.
Graphite (expanded graphite(EG), natural graphite (NG) and graphite oxide (GO)) flame retardant poly(ethylene-co-vinyl acetate) copolymer (EVA) composites (EVA/EG, EVA/NG and EVA/GO) have been prepared by melt compounding. The flammability, the combustion process, the quantity of the residual char, the morphology of the residual chars and the thermal stability of the chars were investigated by cone calorimeter, SEM and TGA. The results indicate that heat release rate (HRR), total heat released (THR) and total smoke release (TSR) of EVA/EG (EG 30 phr) composite decrease to about 21%, 42% and 28% of that of pure EVA, respectively. The orders of the three kinds of graphite on the reduction effect of THR and TSR are EG > NG > GO. The higher the quantity, the higher is the thermal stability of the char residue and the more compact and porous char structure may be the main reasons for the phenomenon above. It has been found that the flame retardance of EVA vulcanisates is improved and the fire jeopardizing is dramatically reduced due to the addition of the graphite, especially for EG, which can give some advice to design formulations for practical applications as the jackets of cables.  相似文献   

6.
One of the greatest challenges in the application of organic phase change materials (PCMs) is to increase their thermal conductivity while maintaining high phase change enthalpy. 1-Tetradecanol/Ag nanowires composite PCM containing 62.73 wt% (about 11.8 vol%) of Ag nanowires showed remarkably high thermal conductivity (1.46 W m−1 K−1) and reasonably high phase change enthalpy (76.5 J g−1). This behavior was attributed to the high aspect ratio of Ag nanowires, few thermal conduct interfaces, and high interface thermal conductivity of Ag nanowires in the composite PCM. These results indicated that Ag nanowires might be strong candidates for thermal conductivity enhancement of organic PCMs.  相似文献   

7.
We prepared PANI/tetradecanol/MWNTs composites via in-situ polymerization. DSC results indicated that the composites are good form-stable phase change materials (PCMs) with large phase change enthalpy of 115 J g−1. The MWNTs were randomly dispersed in the composites and significantly enhanced the thermal conductivity of the PCMs from 0.33 to 0.43 W m−1 K−1. The form-stable PCMs won’t liquefy even it is heated at 80°C, so that the MWNTs were fixed in the composite and the phase separation of the MWNTs from PANI/tetradecanol/MWNTs composites won’t occur.  相似文献   

8.
In this paper, an efficient flame retardant, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was covalently grafted onto the surface of expandable graphite (EG). The resultant DOPO‐grafted expandable graphite (EG‐g‐DOPO) was characterized by Fourier transform infrared spectroscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscopy (XPS), respectively. The thermal stability of EG‐g‐DOPO was also evaluated by thermogravimetric analysis (TGA). Moreover, a series of flame‐retardant ultra‐high‐molecular‐weight polyethylene (UHMWPE) composites with various concentrations of EG‐g‐DOPO were prepared and evaluated. The results show that the UHMWPE composite with 20 wt% EG‐g‐DOPO possesses a satisfactory UL‐94 flame‐retardant grade (V‐0) and a high limiting oxygen index (30.6%). The residual char of the UHMWPE composite with higher EG‐g‐DOPO concentration shows more compact and integrated, providing an efficient barrier for heat release.  相似文献   

9.
Graphite/n-docosane composite phase change materials (PCM) were prepared. 4, 10, and 16% graphite were added into n-docosane in order to study the effect of the amount of graphite to the thermal properties of the composite PCM. The structure of the composite PCM was characterized using scanning electron microscopy. The thermal properties of the composite PCM were determined using thermal constant analysis, heat storage/release curve, differential scanning calorimetry, and thermogravimetry analysis. The results revealed that the heat storage/release rate and the thermal conductivity increased with an increase in the amount of graphite, whereas the latent heat of the composite PCM decreased with the increase in the amount of graphite.  相似文献   

10.
A series of Poly vinyl butyral–Poly (acrylic acid) (PVB-PAA) based form-stable phase change materials (PCMs) have been prepared for the use of thermal energy storage applications. Six types of formulations containing five different fatty alcohols were prepared by adding PVB to PAA. Using electrospinning to fabricate nanofibrous mats, our aim was to investigate their properties as form-stable PCMs. Fatty alcohols, 1-Tetradecanol, 1-Hexadecanol, 1-Octadecanol, 1-Eicosanol and 1-Docosanol, were added separately to base formulation. The structural characterization tests were performed by ATR-FTIR spectroscopy. Morphological tests were conducted using Scanning Electron Microscope (SEM). Thermal performances and phase change behaviors were tested by thermogravimetric analysis system (TGA) and differential scanning calorimetry (DSC). The heating cycle phase change enthalpy is measured between 223 and 241?J/g, and the freezing cycle phase change enthalpy is found between 215 and 239?J/g. The main decomposition PVB-PAA based PCMs started at 220?°C. This study suggested that PVB-PAA based PCMs possess well phase change properties and they were found to have an applicable temperature range. With the presented results these materials promise a great potential in thermal energy storage applications.  相似文献   

11.
ABSTRACT

Expanded graphite (EG)/LiCl-NaCl phase change composites are prepared by aqueous solution method with different EG amount and forming pressure to enhance heat conduction for high-temperature latent heat thermal energy storage application. Their microstructure and thermal conductivity are characterized. Results indicate that the composites are uniform and the LiCl-NaCl eutectic is well dispersed in the graphite flakes. Thermal conductivity of the LiCl-NaCl can increase to as much as 40.51 W/(m·K), which is 46 times higher than that of pure eutectic salt. With forming pressure, the thermal conductivities of the samples show anisotropy because of a flattened irregular honeycomb network of graphite. Within certain limits, the greater the forming pressure is, the more pronounced the anisotropy performs. In addition, the formulas to calculate the thermal conductivity in the axial direction and the radial direction are given based on the average rotation angle φ of EG basal plane, and experimental data show that the formula in the radial direction is especially useful for calculating the thermal conductivity.  相似文献   

12.
The aim of the present work is to investigate the thermal response of PolyEthylene Glycol 1000 (PEG1000) and of its mixtures with the monomer Ethylene Glycol (EG). On purpose Attenuated Total Reflectance Infra-Red (ATR-IR) spectra were collected, in the spectral range spanning from 400 cm−1 to 4000 cm−1, on PEG1000 and on its mixtures with EG, as a function of concentration and temperature, through positive thermal scans, i.e. by increasing temperature. It will be shown that ATR-IR technique reveals a powerful tool for the characterization of the thermal response in polymeric systems. The registered spectra have been analyzed both on the whole investigated spectral range, as well as, separately, on the restricted intramolecular OH stretching vibrational contribution region. In the first case the displacement of the spectral features from the spectrum at the lowest temperature, taken as reference spectrum, shows a lower dependence for the mixture. As far as the intramolecular OH vibrational contribution is concerned, besides a conventional analysis in terms of band components, three different data analysis procedures have been applied, i.e. the characterization of the temperature dependence of the intramolecular OH stretching center frequency, of the spectral distance and of the wavelet cross correlation coefficient. The three applied data analysis approaches indicates that the addition of a small amount of pure EG to PEG1000 significantly influences the OH vibrational properties of the PEG1000 polymeric matrix. The three different methods furnish a unique coherent interpretative picture which supports the validity of the applied approaches. Furthermore, the analyses show the presence of a higher thermal restraint for the PEG + EG mixture which confirms that, within the three-dimensional networks of hydrogen bonded EG-PEG1000 mixtures, a key role is played by EG in determining an increase of the hydrogen bond network density.  相似文献   

13.
The purpose of this study was the preparation of a form-stable composite phase change material (PCM) by incorporation of n-nonadecane within the expanded dolomite (ED). In this investigation, two approaches called impregnation treatment with vacuuming and impregnation by magnetic stirrer were used. This method was first proposed for textile thermal protection. In this method, n-nonadecane was applied as the phase change material and ED as the supporting in order to prepare and construct the composite PCM. Composite properties were determined by Fourier transformation infrared spectroscope and scanning electronic microscope (SEM) techniques and the heat transfer measurement and differential scanning calorimeter (DSC) were used to determine the thermal properties of composite on fabrics. Also, moisture transfer properties were measured. The SEM results showed that the n-nonadecane was well absorbed in the porous network of the ED. DSC analysis and heat transfer also indicated that fabric temperature range for the amount of coated PCM depends on its area; further, by adding composite to the fabric surface, thermal transfer could be reduced. The maximum percentages of n-nonadecane within ED in the composite PCM1 and PCM2 were measured to be about 90 and 70 mass%, respectively. Thus, the composite PCM1 can be considered as a form-stable composite change phase materials.  相似文献   

14.
In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO2) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid nanomaterials were prepared individually for assessing their better performances than paraffin alone. Sodium dodecylbenzene sulfonate (SDBS) was preferred as the surfactant to ensure the dispersion stability of the nanomaterials in the paraffin and mass fraction of SDBS was 1.2 times of the mass fraction of hybrid nanomaterials in the paraffin. The thermal properties of the composite PCMs were determined by differential scanning calorimetry in terms of mass fractions of hybrid nanomaterials and number of thermal cycles. The thermal stabilities of the paraffin and composite PCMs were tested by thermogravimetric analyzer. The thermal conductivity and viscosity of the paraffin due to the addition of various mass fractions of CuO, TiO2, and hybrid nanomaterials were determined by LFA 447 NanoFlash analyzer and Brookfield DV-III Ultra programmable rheometer, respectively. The experimental results proved that the heating and cooling rates of composite PCMs were faster due to the dispersion of hybrid nanomaterials. For composite PCM with 1.0 mass% of hybrid nanomaterials, the melting and freezing times were reduced by 29.8 and 27.7 %, respectively, as compared with the paraffin.  相似文献   

15.
Series of n-octadecane/expanded graphite composite phase-change materials (PCMs) with different mass ratio were prepared using n-octadecane as PCMs, expanded graphite as multi-porous supporting matrix through vacuum impregnation method. Microstructure, crystallization properties, energy storage behavior, thermal cycling property and intelligent temperature-control performance of the composite PCMs were investigated. Results show that the composite PCMs have a good energy storage property. The melting enthalpy and crystallization enthalpy can reach 164.85 and 176.51 J g?1, respectively. Furthermore, the good thermal conductivity of expanded graphite reduces the super-cooling degree of n-octadecane and endows the composite PCMs with fast thermal response rate and excellent thermal cycling stability. As a result, the phase-change temperatures and phase-change enthalpy almost have no change after 50 thermal-cooling cycles. The test of intelligent temperature-control performance shows that the electronic radiator filled with the composite PCMs possesses a high intelligent temperature-control performance, and its temperature can sustain in the range of 22–27.5 °C for about 6120 s. These results indicate that the prepared composite PCMs possess good comprehensive property and can be widely used in energy storage and thermal management systems.  相似文献   

16.
Paraffin wax (PW) is a solid–liquid organic phase change material (PCM). However, the low thermal conductivity and poor light–heat conversion performance limit its feasibility in solar thermal storage applications. In this paper, CuS-decorated carboxyl multi-wall carbon nanotubes (MWCNTs)/PW light–heat conversion composite PCMs were prepared by one step. The structure and properties of the composite PCMs were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimeter, thermogravimetric analysis, coefficient of thermal conductivity, UV–visible–near infrared spectrometer and light–heat conversion testing. The results showed that the light–heat conversion performance of CuS–MWCNTs/PW composite PCMs were better than that of MWCNT/PW composite PCMs with the same mass fraction. Therefore, it is expected that this research will open up new avenues of study for the creation of advanced composite PCM with excellent light–heat conversion performance.  相似文献   

17.
Polyethylene glycol (PEG) as a phase change material possesses three obstacles, such as leakage, low thermal conductivity and low thermal stability. A novel solid-solid phase change material (PCM) based on functionalized graphene oxide (GO), Polyethylene glycol (PEG) was prepared, and the three obstacles of PEG as a PCM was solved in one and the same material. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman and Transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and thermogravimetric analysis/infrared spectrometry (TG-IR) were used to study the properties of supporting material and composite PCM (CPCM). The results indicated that the PEG was grafted on the surface of the supporting material; Compared with pure PEG, the latent heat of CPCM with 9.6 wt% supporting material decreased only 5.3%, however, the thermal conductivity of CPCM increased 111% and the heat peak release rate of CPCM decreased 33.4%.  相似文献   

18.
In this study, paraffin-/ultrasonic-treated diatomite was characterized for use as phase change material (PCM) for thermal energy storage in buildings. The diatomite was treated with ultrasound at various periods of time. The diatomite treated with ultrasound for 60 min (DA-60) was the optimum condition providing the highest surface area without structural degradation. The melting point and latent heat of the paraffin/DA-60 composite PCM were 59 °C and 45.90 J g?1, respectively. The obtained form-stable PCM had good thermal reliability after 500 cycles of thermal cycling test. The thermal performance of PCM was tested by incorporating the paraffin/DA-60 composite PCM into gypsum board. The results showed that the gypsum board containing the paraffin/DA-60 composite PCM had better thermal energy absorption and release characteristics than those of the control sample. The incorporation of paraffin/DA-60 composite PCM into suitable building materials could thus considerably reduce the energy consumption of cooling system in buildings.  相似文献   

19.

Using palmitic acid (PA), expanded graphite (EG), and carbon fiber (CF) as raw materials, PA/EG/CF composite phase change materials (CPCMs) with diverse CF contents were invented by melt blending approach. The effects of different ratios on thermal properties were studied by experimental characterization and testing. Scanning electron microscopy images displayed that PA was adsorbed in the pores of the EG surface, while CF was disorderly but uniformly embedded in the interior and surface of pores. The chemical stability and thermal decomposition stability of CPCM at low temperature were proved by Fourier transform infrared spectrometer and thermogravimetric analyzer results, respectively. According to the law of heat storage/release time and latent heat variation, the optimal ratio scheme was determined, and its heat storage/release time was 65% and 59% lower than pure PA, respectively. The form-stable materials were prepared by compression forming method, and thermal cycling experiment results demonstrated that the higher the content of CF, the stronger the inhibition of mass loss. Based on the experimental results, the PA/EG/CF CPCM has the advantages of stable phase transition, strong stability, and fast heat storage and release rate, so it has a marvelous application prospect in the field of low-temperature heat storage engineering.

  相似文献   

20.

The flammability and the thermal oxidative degradation kinetics of expandable graphite (EG) with magnesium hydroxide (MH) in flame‐retardant polypropylene (PP) composites were studied by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results show that EG is a good synergist for improving the flame retardancy of PP/MH composite and the effect is enhanced with decreasing EG particle size. The Kissinger method and Flynn‐Wall‐Ozawa method were used to determine the apparent activation energy (E) for degradation of PP and flame retarded PP composites. The data obtained from the TGA curve indicate that EG markedly increases the thermal degradation temperature of PP/MH composites and improves the thermal stability of the composites. The kinetic results show that the values of E for degradation of flame retarded PP composites is much higher than that of neat PP, especially PP/MH composites with suitable amount of EG, which indicates that the flame retardants used in this work have a great effect on the mechanisms of pyrolysis and combustion of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号