首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
It is shown, as a complement to Tutte's theorem, that for a given 3-connected graph K which is not a wheel, a graph G is 3-connected and has a subgraph contractible to K if and only if G can be obtained from K by a finite sequence of line-additions and 3-point-splittings.  相似文献   

2.
We present a short proof of the following theorems simultaneously: Kuratowski's theorem, Fary's theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski's theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria of Whitney, MacLane, Tutte, and Fournier (in the case of Whitney's theorem and MacLane's theorem this has already been done by Tutte). In connection with Tutte's planarity criterion in terms of non-separating cycles we give a short proof of the result of Tutte that the induced non-separating cycles in a 3-connected graph generate the cycle space. We consider each of the above-mentioned planarity criteria for infinite graphs. Specifically, we prove that Tutte's condition in terms of overlap graphs is equivalent to Kuratowski's condition, we characterize completely the infinite graphs satisfying MacLane's condition and we prove that the 3-connected locally finite ones have convex representations. We investigate when an infinite graph has a dual graph and we settle this problem completely in the locally finite case. We show by examples that Tutte's criterion involving non-separating cycles has no immediate extension to infinite graphs, but we present some analogues of that criterion for special classes of infinite graphs.  相似文献   

3.
Three types of matroid connectivity, including Tutte's, are defined and shown to generalize corresponding notions of graph connectivity. A theorem of Tutte on cyclically 3-connected graphs, is generalized to matroids.  相似文献   

4.
Tutte found an excluded minor characterization of graphic matroids with five excluded minors. A variation on Tutte's result is presented here. Let {e, f, g} be a circuit of a 3-connected nongraphic matroid M. Then M has a minor using e, f, g isomorphic to either the 4-point line, the Fano matroid, or the bond matroid of K3,3.  相似文献   

5.
An intersection theory developed by the author for matroids embedded in uniform geometries is applied to the case when the ambient geometry is the lattice of partitions of a finite set so that the matroid is a graph. General embedding theorems when applied to graphs give new interpretations to such invariants as the dichromate of Tutte. A polynomial in n + 1 variables, the polychromate, is defined for graphs with n vertices. This invariant is shown to be strictly stronger than the dichromate, it is edge-reconstructible and can be calculated for proper graphs from the polychromate of the complementary graph. By using Tutte's construction for codichromatic graphs (J. Combinatorial Theory 16 (1974), 168–174), copolychromatic (and therefore codichromatic) graphs of arbitrarily high connectivity are constructed thereby solving a problem posed in Tutte's paper.  相似文献   

6.
Several results concerning the generation of all the n-connected graphs from Pn+1 are presented. Necessary and sufficient conditions for two types of operations, soldering and point splitting, to preserve n-connectivity are given.  相似文献   

7.
A graph G is m-partite if its points can be partitioned into m subsets V1,…,Vm such that every line joins a point in Vi with a point in Vj, ij. A complete m-partite graph contains every line joining Vi with Vj. A complete graph Kp has every pair of its p points adjacent. The nth interchange graph In(G) of G is a graph whose points can be identified with the Kn+1's of G such that two points are adjacent whenever the corresponding Kn+1's have a Kn in common.Interchange graphs of complete 2-partite and 3-partite graphs have been characterized, but interchange graphs of complete m-partite graphs for m > 3 do not seem to have been investigated. The main result of this paper is two characterizations of interchange graphs of complete m-partite graphs for m ≥ 2.  相似文献   

8.
Heffter first observed that certain imbeddings of complete graphs give rise to BIBD's with k = 3 and λ = 2 (and sometimes λ = 1); Alpert established a one-to-one correspondence between BIBD's with k = 3 and λ = 2 and triangulation systems for complete graphs. In this paper we extend this correspondence to PBIBD's on two association classes with k = 3, λ1 = 0 and λ2 = 2, and triangulation systems for strongly regular graphs. The group divisible designs of Hanani are used to construct triangulations for the graphs Kn(m), in each case permitted by the euler formula. Conversely, triangular imbeddings of Kn(m) are constructed which lead to new group divisible designs. A process is developed for “doubling” a given PBIBD of an appropriate form. Various extensions of these ideas are discussed, as is an application to the construction of quasigroups.  相似文献   

9.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

10.
Thomassen [Reflections on graph theory, J. Graph Theory 10 (1986) 309-324] conjectured that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5-E(C4), where C4 is a cycle of length 4 in K5. In Broersma et al. [On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001) 125-136], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass free line graph, is hamiltonian connected.  相似文献   

11.
Tutte has defined n-connection for matroids and proved a connected graph is n-connected if and only if its polygon matroid is n-connected. In this paper we introduce a new notion of connection in graphs, called n-biconnection, and prove an analogous theorem for graphs and their bicircular matroids. Results concerning 3-biconnected graphs are also presented.  相似文献   

12.
In this paper we prove a stronger version of a result of Ralph Reid characterizing the ternary matroids (i.e., the matroids representable over the field of 3 elements, GF(3)). In particular, we prove that a matroid is ternary if it has no seriesminor of type Ln for n ≥ 5 (n cells and n circuits, each of size n ? 1), and no series-minor of type L51 (dual of L5), BII (Fano matroid) or BI (dual of type BII). The proof we give does not assume Reid's theorem. Rather we give a direct proof based on the methods (notably the homotopy theorem) developed by Tutte for proving his characterization of regular matroids. Indeed, the steps involved in our proof closely parallel Tutte's proof, but carrying out these steps now becomes much more complicated.  相似文献   

13.
In 1992, Xiaoya Zha conjectured that the line graph of a 3-connected non-planar graph contains a subdivision of K 5. In this paper we prove this conjecture. This result is the main ingredient of [4] where a complete characterization of all the 4-connected claw-free graphs not containing a subdivision of K 5 is obtained.  相似文献   

14.
It is proved that if a planar triangulation different from K3 and K4 contains a Hamiltonian cycle, then it contains at least four of them. Together with the result of Hakimi, Schmeichel, and Thomassen [2], this yields that, for n ? 12, the minimum number of Hamiltonian cycles in a Hamiltonian planar triangulation on n vertices is four. We also show that this theorem holds for triangulations of arbitrary surfaces and for 3-connected triangulated graphs.  相似文献   

15.
It is shown that for every sequence of non-negative integers (p n|1≦n≠3) satisfying the equation {ie19-1} (respectively, =0) there exists a 6-valent, planar (toroidal, respectively) multi-graph that has preciselyp n n gonal faces for alln, 1≦n≠3. This extends Eberhard’s theorem that deals, in a similar fashion, with 3-valent, 3-connected planar graphs; the equation involved follows from the famous Euler’s equation.  相似文献   

16.
Whitney’s 2-switching theorem states that any two embeddings of a 2-connected planar graph in S 2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term “twisting” and “2-switching” respectively. With the twisting operation, we give a pure geometrical proof of Whitney’s 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs.  相似文献   

17.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

18.
A criterion is proved for a countable graph to possess a perfect matching, in terms of “marriage” in bipartite graphs associated with the graph. In the finite case, this yields Tutte's 1-factor theorem. The criterion is conjectured to be valid for general graphs.  相似文献   

19.
Let G be a multigraph on n vertices, possibly with loops. An f-factor is a subgraph of G with degree fi at the ith vertex for i = 1, 2,…, n. Tutte's f-factor theorem is proved by providing an algorithm that either finds an f-factor or shows that it does not exist and does this in O(n3) operations. Note that the complexity bound is independent of the number of edges of G and the degrees fi. The algorithm is easily altered to handle the problem of looking for a symmetric integral matrix with given row and column sums by assigning loops degree one. A (g,f)-factor is a subgraph of G with degree di at the ith vertex, where gi ? di ? fi, for i = 1,2,…, n. Lovasz's (g,f)-factor theorem is proved by providing an O(n3) algorithm to either find a (g,f)-factor or show one does not exist.  相似文献   

20.
In this paper we prove the following: let G be a graph with eG edges, which is (k ? 1)-edge- connected, and with all valences ?k. Let 1?r?k be an integer, then G contains a spanning subgraph H, so that all valences in H are ?r, with no more than ?reG?k? edges. The proof is based on a useful extension of Tutte's factor theorem [4,5], due to Lovász [3]. For other extensions of Petersen's theorem, see [6,7,8].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号