首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let A denote a decomposable symmetric complex valued n-linear function on Cm. We prove
6A·A62?2n2nn?16A?A62
, where · denotes the symmetric product and ? the tensor product. As a consequence we have per
MMMM?2n[per(M)]2
, where M is a positive semidefinite Hermitian matrix and per denotes the permanent function. A sufficient condition for equality in the matrix inequality is that M is a nonnegative diagonal matrix.  相似文献   

2.
Suppose each of m, n, and k is a positive integer, k ? n, A is a (real-valued) symmetric n-linear function on Em, and B is a k-linear symmetric function on Em. The tensor and symmetric products of A and B are denoted, respectively, by A ?B and A?B. The identity
6A · B62=q=0n(nk)(n+kk)6A?qB62
is proven by Neuberger in [1]. An immediate consequence of this identity is the inequality
6A · B 62?n+kn?16A · B 62
In this paper a necessary and sufficient condition for
6A · B 62=n+kn?6A · B 62
is given. It is also shown that under certain conditions the inequality can be considerably improved. This improvement results from an analysis of the terms 6A?qB6, 1?q?n, appearing in the identity.  相似文献   

3.
Let the n × n complex matrix A have complex eigenvalues λ12,…λn. Upper and lower bounds for Σ(Reλi)2 are obtained, extending similar bounds for Σ|λi|2 obtained by Eberlein (1965), Henrici (1962), and Kress, de Vries, and Wegmann (1974). These bounds involve the traces of A1A, B2, C2, and D2, where B=12 (A + A1), C=12 (A ? A1) /i, and D = AA1 ? A1A, and strengthen some of the results in our earlier paper “Bounds for eigenvalues using traces” in Linear Algebra and Appl. [12].  相似文献   

4.
Let A(x,ε) be an n×n matrix function holomorphic for |x|?x0, 0<ε?ε0, and possessing, uniformly in x, an asymptotic expansion A(x,ε)?Σr=0Ar(x) εr, as ε→0+. An invertible, holomorphic matrix function P(x,ε) with an asymptotic expansion P(x,ε)?Σr=0Pr(x)εr, as ε→0+, is constructed, such that the transformation y = P(x,ε)z takes the differential equation εhdydx = A(x,ε)y,h a positive integer, into εhdzdx = B(x,ε)z, where B(x,ε) is asymptotically equal, to all orders, to a matrix in a canonical form for holomorphic matrices due to V.I. Arnold.  相似文献   

5.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

6.
Let A be a real or complex n × n interval matrix. Then it is shown that the Neumann series Σk=0Ak is convergent iff the sequence {Ak} converges to the null matrix O, i.e., iff the spectral radius of the real comparison matrix B constructed in [2] is less than one.  相似文献   

7.
Let (RN,6·6) be the space RN equipped with a norm 6·6 whose unit ball has a bounded volume ratio with respect to the Euclidean unit ball. Let Γ be any random N×n matrix with N>n, whose entries are independent random variables satisfying some moment assumptions. We show that with high probability Γ is a good isomorphism from the n-dimensional Euclidean space (Rn,|·|) onto its image in (RN,6·6): there exist α,β>0 such that for all x∈Rn, αN|x|?6Γx6?βN|x|. This solves a conjecture of Schechtman on random embeddings of ?2n into ?1N. To cite this article: A. Litvak et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).  相似文献   

8.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

9.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

10.
It is shown that if A?Ωn?{Jn} satisfies
nkσk(A)?(n?k+1)2 σk?1(A)
(k=1,2,…,n)
, where σk(A) denotes the sum of all kth order subpermanent of A, then Per[λJn+(1?λ)A] is strictly decreasing in the interval 0<λ<1.  相似文献   

11.
The Schur product of two n×n complex matrices A=(aij), B=(bij) is defined by A°B=(aijbij. By a result of Schur [2], the algebra of n×n matrices with Schur product and the usual addition is a commutative Banach algebra under the operator norm (the norm of the operator defined on Cn by the matrix). For a fixed matrix A, the norm of the operator B?A°B on this Banach algebra is called the Schur multiplier norm of A, and is denoted by ∥Am. It is proved here that ∥A∥=∥U1AU∥m for all unitary U (where ∥·∥ denotes the operator norm) iff A is a scalar multiple of a unitary matrix; and that ∥Am=∥A∥ iff there exist two permutations P, Q, a p×p (1?p?n) unitary U, an (n?p)×(n?p)1 contraction C, and a nonnegative number λ such that
A=λPU00CQ;
and this is so iff ∥A°A?∥=∥A∥2, where ā is the matrix obtained by taking entrywise conjugates of A.  相似文献   

12.
An anti-Hadamard matrix may be loosely defined as a real (0, 1) matrix which is invertible, but only just. Let A be an invertible (0, 1) matrix with eigenvalues λi, singular values σi, and inverse B = (bij). We are interested in the four closely related problems of finding λ(n) = minA, i|λi|, σ(n) = minA, iσi, χ(n) = maxA, i, j |bij|, and μ(n) = maxAΣijb2ij. Then A is an anti-Hadamard matrix if it attains μ(n). We show that λ(n), σ(n) are between (2n)?1(n4)?n2 and cn (2.274)?n, where c is a constant, c(2.274)n?χ(n)?2(n4)n2, and c(5.172)n?μ(n)?4n2 (n4)n. We also consider these problems when A is restricted to be a Toeplitz, triangular, circulant, or (+1, ?1) matrix. Besides the obvious application—to finding the most ill-conditioned (0, 1) matrices—there are connections with weighing designs, number theory, and geometry.  相似文献   

13.
n independent adiabatic invariants in involution are found for a slowly varying Hamiltonian system of order 2n × 2n. The Hamiltonian system considered is ?u? = A(t)u as ? → 0+, where A(t) is a 2n × 2n real matrix with distinct, pure imaginary eigen values for each t? [?∞, ∞], and d(j)Adt(j) ? Lj(?∞, ∞), for all j > 0. The adiabatic invariants Is(u, t), s = 1,…, n are expressed in terms of the eigen vectors of A(t). Approximate solutions for the system to arbitrary order of ? are obtained uniformly for t? [?∞, ∞].  相似文献   

14.
Let A(n, k) be the number of k-long cycles generated by binary shift registers of span n ? 2. It is shown that A(n, k) is odd if and only if k = 13[2n+1 ± 3 + (?1)n]. A recursive construction of complete self-dual, self-reversing cycles of these lengths is presented.  相似文献   

15.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

16.
Given the data (xi, yi), i=1, 2, …, n, the problem is to find the values of the linear and nonlinear parameters â and b? which minimize the nonlinear functional |F(b)a?y|22 over a ? Rp, b ? Rq, where F ? Rn×p is a variable matrix and assumed to be of full rank, and y ? Rn is a constant vector.In this paper, we present a method for solving this problem by imbedding it into a one-parameter family of problems and by following its solution path using a predictor-corrector algorithm. In the course of iterations, the original problem containing p+q+1 variables is transformed into a problem with q+1 nonlinear variables by taking the separable structure of the problem into account. By doing so, the method reduces to solving a series of equations of smaller size and a considerable saving in the storage is obtained.Results of numerical experiments are reported to demonstrate the effectiveness of the proposed method.  相似文献   

17.
Let p, q be arbitrary parameter sets, and let H be a Hilbert space. We say that x = (xi)i?q, xi ? H, is a bounded operator-forming vector (?HFq) if the Gram matrixx, x〉 = [(xi, xj)]i?q,j?q is the matrix of a bounded (necessarily ≥ 0) operator on lq2, the Hilbert space of square-summable complex-valued functions on q. Let A be p × q, i.e., let A be a linear operator from lq2 to lp2. Then exists a linear operator ǎ from (the Banach space) HFq to HFp on D(A) = {x:x ? HFq, A〈x, x〉12 is p × q bounded on lq2} such that y = ǎx satisfies yj?σ(x) = {space spanned by the xi}, 〈y, x〉 = Ax, x〉 and 〈y, y〉 = A〈x, x〉12(A〈x, x〉12)1. This is a generalization of our earlier [J. Multivariate Anal.4 (1974), 166–209; 6 (1976), 538–571] results for the case of a spectral measure concentrated on one point. We apply these tools to investigate q-variate wide-sense Markov processes.  相似文献   

18.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

19.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

20.
It is shown that if A and B are n × n complex matrices with A = A1and ∥AB ? BA∥</ 2?2(n ? 1), then there exist n × n matrices A′ and B′ with A′ = A′1such that A′B′ = B′A′ and ∥A ? A′∥? ?, ∥B ? B′∥? ?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号