首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A novel approach is proposed for suppression of diagonal peaks in 15N- and 13C-edited NOESY spectroscopy based on subtracting a spectrum with only diagonal peaks from the conventional NOESY spectrum. This method can be applied to most heteronuclear-edited NOESY experiments. It is far more sensitive than the TROSY-based approach for biomolecules with little TROSY effect, and nearly complete suppression of diagonal peaks can be achieved. The method has been demonstrated on samples of 15N-labeled calmodulin (17 kDa), 13C-labeled DdCAD-1 (24 kDa), and 13C-labeled hemoglobin (65 kDa), showing that cross-peaks very close to diagonals can be assigned reliably based on the difference spectra.  相似文献   

2.
The unambiguous assignment of the aromatic ring resonances in proteins has been severely hampered by the inherently poor sensitivities of the currently available methodologies developed for uniformly 13C/15N-labeled proteins. Especially, the small chemical shift differences between aromatic ring carbons and protons for phenylalanine residues in proteins have prevented the selective observation and unambiguous assignment of each signal. We have solved all of the difficulties due to the tightly coupled spin systems by preparing regio-/stereoselectively 13C/2H/15N-labeled phenylalanine (Phe) and tyrosine (Tyr) to avoid the presence of directly connected 13C-1H pairs in the aromatic rings. The superiority of the new labeling schemes for the assignment of aromatic ring signals is clearly demonstrated for a 17 kDa calcium binding protein, calmodulin.  相似文献   

3.
Side-chain proton and carbon-13 resonance assignments of [13C;15N]-enriched proteins usually rely on combinations of several multi-dimensional experiments. Here, we describe a four-dimensional pulse sequence, H(C)C-COSY-TOCSY-(CACO)NH, which provides the information required to assign completely aliphatic side-chain resonance frequencies. As in widely used HCC(CO)NH-TOCSY experiments, problems due to spectral crowding are alleviated by exploiting the dispersion of backbone amide 1H and 15N signals. The modification introduced here allows signals from different side-chains to be distinguished even in the case of overlap in the 1H(N)-15N plane of the spectra. For illustration, the new method is applied to two proteins with molecular masses of 11 and 23 kDa.  相似文献   

4.
In this contribution, a pulse sequence is described for recording accordion-optimized DEPT experiments. The proposed ACCORDEPT experiment detects a wide range of one-bond coupling constants using accordion optimization. As a proof of concept, this strategy has been applied to a mesogen containing a large range of one-bond (1)J(CH) coupling constants associated with the various structural elements. The ACCORDEPT experiment afforded significant enhancements for the resonances with the larger (1)J(CH) couplings, similar SNR for aliphatic resonances, but reduced SNR for aliphatic resonances as compared with the standard DEPT experiment. In addition, the ACCORDEPT is straightforward to implement, does not require any supplementary calibration procedures and can be used under automated conditions without difficulty by inexperienced users.  相似文献   

5.
We demonstrate constraint of peptide backbone and side-chain conformation with 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift, magic-angle spinning NMR experiments. In these experiments, polarization is transferred from (15)N[i] by ramped SPECIFIC cross polarization to the (13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1] resonances and evolves coherently under the correlated (1)H-(15)N and (1)H-(13)C dipolar couplings. The resulting set of frequency-labeled (15)N(1)H-(13)C(1)H dipolar spectra depend strongly upon the molecular torsion angles phi[i], chi1[i], and psi[i - 1]. To interpret the data with high precision, we considered the effects of weakly coupled protons and differential relaxation of proton coherences via an average Liouvillian theory formalism for multispin clusters and employed average Hamiltonian theory to describe the transfer of (15)N polarization to three coupled (13)C spins ((13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1]). Degeneracies in the conformational solution space were minimized by combining data from multiple (15)N(1)H-(13)C(1)H line shapes and analogous data from other 3D (1)H-(13)C(alpha)-(13)C(beta)-(1)H (chi1), (15)N-(13)C(alpha)-(13)C'-(15)N (psi), and (1)H-(15)N[i]-(15)N[i + 1]-(1)H (phi, psi) experiments. The method is demonstrated here with studies of the uniformly (13)C,(15)N-labeled solid tripeptide N-formyl-Met-Leu-Phe-OH, where the combined data constrains a total of eight torsion angles (three phi, three chi1, and two psi): phi(Met) = -146 degrees, psi(Met) = 159 degrees, chi1(Met) = -85 degrees, phi(Leu) = -90 degrees, psi(Leu) = -40 degrees, chi1(Leu) = -59 degrees, phi(Phe) = -166 degrees, and chi1(Phe) = 56 degrees. The high sensitivity and dynamic range of the 3D experiments and the data analysis methods provided here will permit immediate application to larger peptides and proteins when sufficient resolution is available in the (15)N-(13)C chemical shift correlation spectra.  相似文献   

6.
We describe three- and four-dimensional semiconstant-time transferred echo double resonance (SCT-TEDOR) magic-angle spinning solid-state nuclear magnetic resonance (NMR) experiments for the simultaneous measurement of multiple long-range (15)N-(13)C(methyl) dipolar couplings in uniformly (13)C, (15)N-enriched peptides and proteins with high resolution and sensitivity. The methods take advantage of (13)C spin topologies characteristic of the side-chain methyl groups in amino acids alanine, isoleucine, leucine, methionine, threonine, and valine to encode up to three distinct frequencies ((15)N-(13)C(methyl) dipolar coupling, (15)N chemical shift, and (13)C(methyl) chemical shift) within a single SCT evolution period of initial duration approximately 1(1)J(CC) (where (1)J(CC) approximately 35 Hz, is the one-bond (13)C(methyl)-(13)C J-coupling) while concurrently suppressing the modulation of NMR coherences due to (13)C-(13)C and (15)N-(13)C J-couplings and transverse relaxation. The SCT-TEDOR schemes offer several important advantages over previous methods of this type. First, significant (approximately twofold to threefold) gains in experimental sensitivity can be realized for weak (15)N-(13)C(methyl) dipolar couplings (corresponding to structurally interesting, approximately 3.5 A or longer, distances) and typical (13)C(methyl) transverse relaxation rates. Second, the entire SCT evolution period can be used for (13)C(methyl) and/or (15)N frequency encoding, leading to increased spectral resolution with minimal additional coherence decay. Third, the experiments are inherently "methyl selective," which results in simplified NMR spectra and obviates the use of frequency-selective pulses or other spectral filtering techniques. Finally, the (15)N-(13)C cross-peak buildup trajectories are purely dipolar in nature (i.e., not influenced by J-couplings or relaxation), which enables the straightforward extraction of (15)N-(13)C(methyl) distances using an analytical model. The SCT-TEDOR experiments are demonstrated on a uniformly (13)C, (15)N-labeled peptide, N-acetyl-valine, and a 56 amino acid protein, B1 immunoglobulin-binding domain of protein G (GB1), where the measured (15)N-(13)C(methyl) dipolar couplings provide site-specific information about side-chain dihedral angles and the packing of protein molecules in the crystal lattice.  相似文献   

7.
The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively (15)N-labeled samples to resolve and assign the backbone amide resonances and to measure the associated (15)N chemical shift and (1)H-(15)N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. (1)H/(13)C/(15)N triple-resonance experiments were applied to selectively (13)C'- and (15)N-labeled samples to complete the resonance assignments, especially for residues in the nonhelical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers.  相似文献   

8.
New NMR experiments are presented for the assignment of methyl (13)C and (1)H chemical shifts from Ile, Leu, and Val residues in high molecular weight proteins. The first class of pulse schemes transfers magnetization from the methyl group to the backbone amide spins for detection, while the second more sensitive class uses an "out-and-back" transfer scheme in which side-chain carbons or backbone carbonyls are correlated with methyl (13)C and (1)H spins. Both groups of experiments benefit from a new isotopic labeling scheme for protonation of Leu and Val methyl groups in large deuterated proteins. The approach makes use of alpha-ketoisovalerate that is (13)C-labeled and protonated in one of its methyl groups ((13)CH(3)), while the other methyl is (12)CD(3). The use of this biosynthetic precursor leads to production of Leu and Val residues that are (13)CH(3)-labeled at only a single methyl position. Although this labeling pattern effectively reduces by 2-fold the concentration of Leu and Val methyls in NMR samples, it ensures linearity of Val and Leu side-chain (13)C spin-systems, leading to higher sensitivity and, for certain classes of experiments, substantial simplification of NMR spectra. Very near complete assignments of the 276 Ile (delta 1 only), Leu, and Val methyl groups in the single-chain 723-residue enzyme malate synthase G (MSG, molecular tumbling time 37 +/- 2 ns at 37 degrees C) have been obtained using the proposed isotopic labeling strategy in combination with the new NMR experiments.  相似文献   

9.
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.  相似文献   

10.
Biological magic angle spinning (MAS) solid-state nuclear magnetic resonance spectroscopy has developed rapidly over the past two decades. For the structure determination of a protein by solid-state NMR, routinely (13)C,(13)C distance restraints as well as dihedral restraints are employed. In protonated samples, this is achieved by growing the bacterium on a medium which contains [1,3]-(13)C glycerol or [2]-(13)C glycerol to dilute the (13)C spin system. Labeling schemes, which rely on heteronuclei, are insensitive both for detection and in terms of quantification of distances, since they are relying on low-γ nuclei. Proton detection can in principle provide a gain in sensitivity by a factor of 8 and 31, compared to the (13)C or (15)N detected version of the experiment. We report here a new labeling scheme, which enables (1)H-detection of aliphatic resonances with high resolution in MAS solid-state NMR spectroscopy. We prepared microcrystals of the SH3 domain of chicken α-spectrin with 5% protonation at nonexchangeable sites and obtained line widths on the order of 25 Hz for aliphatic (1)H resonances. We show further that (13)C resolved 3D-(1)H,(1)H correlation experiments yield access to long-range proton-proton distances in the protein.  相似文献   

11.
Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method.  相似文献   

12.
A new 3D multiple-quantum (H)CCmHm-TOCSY experiment is proposed to assign methyl resonances in high-molecular weight proteins, on the basis of spectral patterns and prior backbone assignments. The favorable relaxation properties of the multiple-quantum coherences and the slow decays of in-phase methyl 13C magnetizations optimize performance of the proposed experiment for application to large proteins. The experiment has been demonstrated on an acyl carrier protein synthase (trimer, 42 kDa, overall correlation time of 26 ns) at 25 degrees C, and 63 out of 67 nonmethionine methyl groups have been assigned.  相似文献   

13.
Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and intrinsic flexibility. We show here that motional-filtered high-resolution solid-state NMR (ssNMR) experiments allow for the observation and structural analysis of very large multidomain membrane proteins that are characterized by different motional time scales. This approach was used to probe the folding of the 790-residue membrane protein BamA, which is the core component of the Escherichia coli outer membrane protein assembly machinery. A combination of dipolar- and scalar-based two-dimensional ssNMR experiments applied to two uniformly (13)C,(15)N-labeled BamA variants revealed characteristic secondary structure elements and distinct dynamics within the BamA transmembrane protein segment and the periplasmic POTRA domains. This approach hence provides a general strategy for collecting atomic-scale structural information on multidomain (membrane) proteins in a native-like environment.  相似文献   

14.
A novel TROSY (transverse relaxation-optimized spectroscopy) element is introduced that exploits cross-correlation effects between (13)C-(13)C dipole-dipole (DD) coupling and (13)C chemical shift anisotropy (CSA) of aromatic ring carbons. Although these (13)C-(13)C effects are smaller than the previously described [(13)C,(1)H]-TROSY effects for aromatic (13)C-(1)H moieties, their constructive use resulted in further transverse relaxation-optimization by up to 15% for the resonances in a 17 kDa protein-DNA complex. As a practical application, two- and three-dimensional versions of the HCN triple resonance experiment for obtaining ribose-base and intrabase correlations in the nucleotides of DNA and RNA (Sklenar, V.; Peterson, R. D.; Rejante, M. R.; Feigon, J. J. Biomol. NMR 1993, 3, 721-727) have been implemented with [(13)C,(1)H]- and [(13)C,(13)C]-TROSY elements to reduce the rate of transverse relaxation during the polarization transfers between ribose (13)C1' and base (15)N1/9 spins, and between (13)C6/8 and N1/9 within the bases. The resulting TROSY-HCN experiment is user-friendly, with a straightforward, robust experimental setup. Compared to the best previous implementations of the HCN experiment, 2-fold and 5-fold sensitivity enhancements have been achieved for ribose-base and intrabase connectivities, respectively, for (13)C,(15)N-labeled nucleotides in structures with molecular weights of 10 and 17 kDa. TROSY-HCN experiments should be applicable also with significantly larger molecular weights. By using modified TROSY-HCN schemes, the origins of the sensitivity gains have been analyzed.  相似文献   

15.
A strategy for simplified and complete resonance assignment of insoluble and noncrystalline proteins by solid-state NMR (ssNMR) spectroscopy is presented. Proteins produced with [1-(13)C]- or [2-(13)C]glucose are very sparsely labeled, and the resulting 2D ssNMR spectra exhibit smaller line widths (by a factor of ~2 relative to uniformly labeled proteins) and contain a reduced number of cross-peaks. This allows for an accelerated and straightforward resonance assignment without the necessity of time-consuming 3D spectroscopy or sophisticated pulse sequences. The strategy aims at complete backbone and side-chain resonance assignments based on bidirectional sequential walks. The approach was successfully demonstrated with the de novo assignment of the Type Three Secretion System PrgI needle protein. Using a limited set of simple 2D experiments, we report a 97% complete resonance assignment of the backbone and side-chain (13)C atoms.  相似文献   

16.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

17.
High-resolution solid-state NMR spectroscopy has become a promising tool for protein structure determination. Here, we describe a new dipolar-chemical shift correlation experiment for the measurement of homonuclear 13C-13C distances in uniformly 13C,15N-labeled proteins and demonstrate its suitability for protein structure determination and refinement. The experiments were carried out on the beta1 immunoglobulin binding domain of protein G (GB1). Both intraresidue and interresidue distances between carbonyl atoms and atoms in the aliphatic side chains were collected using a three-dimensional chemical shift correlation spectroscopy experiment that uses homogeneously broadened rotational resonance recoupling for carbon mixing. A steady-state approximation for the polarization transfer function was employed in data analysis, and a total of 100 intramolecular distances were determined, all in the range 2.5-5.5 A. An additional 41 dipolar contacts were detected, but the corresponding distances could not be accurately quantified. Additional distance and torsional restraints were derived from the proton-driven spin diffusion measurements and from the chemical shift analysis, respectively. Using all these restraints, it was possible to refine the structure of GB1 to a root-mean square deviation of 0.8 A. The approach is of general applicability for peptides and small proteins and can be easily incorporated into a structure determination and refinement protocol.  相似文献   

18.
We describe an NMR method that directly monitors the influence of ligands on protein-protein interactions. For a two-protein interaction complex, the size of one component should be small enough (less than ca. 15 kDa) to provide a good quality (15)N((13)C) HSQC spectrum after (15)N((13)C) labeling. The size of the second unlabeled component should be large enough so that the molecular weight of the preformed complex is larger than ca. 40 kDa. When the smaller protein binds to a larger one, broadening of NMR resonances results in the disappearance of most of its cross-peaks in the HSQC spectrum. Addition of an antagonist that can dissociate the complex would restore the HSQC spectrum of the smaller component. The method directly shows whether an antagonist releases proteins in their wild-type folded states or whether it induces their denaturation, partial unfolding, or precipitation. We illustrate the method by studying lead compounds that have recently been reported to block the MDM2-p53 interaction. Activation of p53 in tumor cells by inhibiting its interaction with MDM2 offers new strategy for cancer therapy.  相似文献   

19.
We demonstrate the simultaneous measurement of several backbone torsion angles psi in the uniformly (13)C,(15)N-labeled alpha-Spectrin SH3 domain using two different 3D 15N-13C-13C-15N dipolar-chemical shift magic-angle spinning (MAS) NMR experiments. The first NCCN experiment utilizes double quantum (DQ) spectroscopy combined with the INADEQUATE type 13C-13C chemical shift correlation. The decay of the DQ coherences formed between 13C'(i) and 13C(alphai) spin pairs is determined by the "correlated" dipolar field due to 15N(i)-13C(alphai) and 13C'(i)-15N(i+1) dipolar couplings and is particularly sensitive to variations of the torsion angle in the regime |psi| > 140 degrees. However, the ability of this experiment to constrain multiple psi-torsion angles is limited by the resolution of the 13C(alpha)-(13)CO correlation spectrum. This problem is partially addressed in the second approach described here, which is an NCOCA NCCN experiment. In this case the resolution is enhanced by the superior spectral dispersion of the 15N resonances present in the 15N(i+1)-13C(alphai) part of the NCOCA chemical shift correlation spectrum. For the case of the 62-residue alpha-spectrin SH3 domain, we determined 13 psi angle constraints with the INADEQUATE NCCN experiment and 22 psi constraints were measured in the NCOCA NCCN experiment.  相似文献   

20.
Eight (15)N-labeled derivatives of 1-ethoxy-2,2,6,6-tetramethylpiperidine were synthesized in order to investigate the effects of their structural units on (15)N NMR spectra. A single peak is found for each alkoxyamine. The chemical shift depends extensively on the nature of the alpha carbon atom of the alkoxy group. The remote functional group attached to position 4 of the piperidine ring has a smaller but still significant effect. The results of the (15)N NMR measurements are supported by the detection of the N-H and N-C spin-spin coupling from the (1)H and (13)C NMR. The investigated alkoxyamines are model compounds for the radical-trapping products of styryl, methyl methacryloyl, alpha-methylstyryl, and methyl acryloyl radicals by (15)N-labeled nitroxides. The potential of (15)N NMR spectroscopy to analyze such products is discussed. In addition, it is shown that the (13)C chemical shifts of the alpha carbon atom of the alkoxy group fall in an empty part of the (13)C NMR spectrum, which allows the identification of trapped (macro)radicals via natural abundance (13)C NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号