首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.  相似文献   

2.
A simple global synchronization criterion for coupled chaotic systems   总被引:16,自引:0,他引:16  
Based on the Lyapunov stabilization theory and Gerschgorin theorem, a simple generic criterion is derived for global synchronization of two coupled chaotic systems with a unidirectional linear error feedback coupling. This simple criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. To demonstrate the efficiency of design, the suggested approach is applied to some typical chaotic systems with different types of nonlinearities, such as the original Chua’s circuit, the modified Chua’s circuit with a sine function, and the Rössler chaotic system. It is proved that these synchronizations are ensured by suitably designing the coupling parameters.  相似文献   

3.
This paper studies chaos synchronization of three coupled chaos systems with ring connection. New generic criteria of global chaos synchronization are proposed respectively according to the way of coupling (unidirectional or bidirectional). As an example, The criteria are successfully applied to three coupled identical Lorenz systems. Numerical simulation are shown for demonstration.  相似文献   

4.
In this paper, we consider the problem of synchronizing a master–slave chaotic system in the sampled-data setting. We consider both the intermittent coupling and continuous coupling cases. We use an Euler approximation technique to discretize a continuous-time chaotic oscillator containing a continuous nonlinear function. Next, we formulate the problem of global asymptotic synchronization of the sampled-data master–slave chaotic system as equivalent to the states of a corresponding error system asymptotically converging to zero for arbitrary initial conditions. We begin by developing a pulse-based intermittent control strategy for chaos synchronization. Using the discrete-time Lyapunov stability theory and the linear matrix inequality (LMI) framework, we construct a state feedback periodic pulse control law which yields global asymptotic synchronization of the sampled-data master–slave chaotic system for arbitrary initial conditions. We obtain a continuously coupled sampled-data feedback control law as a special case of the pulse-based feedback control. Finally, we provide experimental validation of our results by implementing, on a set of microcontrollers endowed with RF communication capability, a sampled-data master–slave chaotic system based on Chua’s circuit.  相似文献   

5.
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems.  相似文献   

6.
We present an approach to the chaos synchronization of complex networks with distinct nodes. The chaotic synchronization is achieved by adding a derivative coupling term in the network equation. We assume that node in networks are different and are given by the Lorenz, Rössler, Chen and Sprott chaotic systems. The derivative term is capable to induce the synchronous behavior in the network. Moreover such a coupling leads the global behavior to a chaotic attractor. We found that without derivative coupling the network is leaded only to an equilibrium point or a limit cycle. Numerical simulations are provided to illustrate the result. Complementary the network synchrony can be chaotic in presence of the derivative coupling.  相似文献   

7.
Generalized chaos synchronization has been widely studied and many control methods have been presented, but up to now no criterion has been given for generalized unsynchronization. The generalized unsynchronization means that the state variables of two coupled chaotic systems cannot approach generalized synchronization. In this paper, we propose two theorems which give the criteria of generalized unsynchronization for two different chaotic dynamic systems with whatever large strength of linear coupling. Two simulated examples are also given.  相似文献   

8.
Chaos and chaos synchronization of the centrifugal flywheel governor system are studied in this paper. By mechanics analyzing, the dynamical equation of the centrifugal flywheel governor system is established. Because of the non-linear terms of the system, the system exhibits both regular and chaotic motions. The characteristic of chaotic attractors of the system is presented by the phase portraits and power spectra. The evolution from Hopf bifurcation to chaos is shown by the bifurcation diagrams and a series of Poincaré sections under different sets of system parameters, and the bifurcation diagrams are verified by the related Lyapunov exponent spectra. This letter addresses control for the chaos synchronization of feedback control laws in two coupled non-autonomous chaotic systems with three different coupling terms, which is demonstrated and verified by Lyapunov exponent spectra and phase portraits. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

9.
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation.  相似文献   

10.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

11.
A new general strategy to achieve chaos synchronization by variable strength linear coupling without another active control is proposed. They give the criteria of chaos synchronization for two identical chaotic systems and two different chaotic dynamic systems with variable strength linear coupling. In this method, the time derivative of Lyapunov function in series form is firstly used. Lorenz system, Duffing system, Rössler system and Hyper-Rössler system are presented as simulated examples.  相似文献   

12.
We consider in this paper the synchronization dynamics of coupled chaotic Van der Pol–Duffing systems. We first find that with the judicious choose of the set of initial conditions, the model exhibits two strange chaotic attractors. The problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol–Duffing systems is investigated. The stability boundaries of the synchronization process between two coupled driven Van der Pol model are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane.  相似文献   

13.
Based on stability theory of impulsive differential equation and new comparison theory of impulsive differential system, we study the chaos impulsive synchronization of two coupled chaotic systems using the unidirectional linear error feedback scheme. Some generic conditions of chaos impulsive synchronization of two coupled chaotic systems are derived, and to apply the conditions to typical chaotic system––the original Chua’s circuit. The example illustrates the effectiveness of the proposed result.  相似文献   

14.
This paper investigates the global synchronization of a class of third-order non-autonomous chaotic systems via the master–slave linear state error feedback control. A sufficient global synchronization criterion of linear matrix inequality (LMI) and several algebraic synchronization criteria for single-variable coupling are proven. These LMI and algebraic synchronization criteria are then applied to two classes of well-known third-order chaotic systems, the generalized Lorenz systems and the gyrostat systems, proving that the local synchronization criteria for the chaotic generalized Lorenz systems developed in the existing literature can actually be extended to describe global synchronization and obtaining some easily implemented synchronization criteria for the gyrostat systems.  相似文献   

15.
A note on phase synchronization in coupled chaotic fractional order systems   总被引:1,自引:0,他引:1  
The dynamic behaviors of fractional order systems have received increasing attention in recent years. This paper addresses the reliable phase synchronization problem between two coupled chaotic fractional order systems. An active nonlinear feedback control scheme is constructed to achieve phase synchronization between two coupled chaotic fractional order systems. We investigated the necessary conditions for fractional order Lorenz, Lü and Rössler systems to exhibit chaotic attractor similar to their integer order counterpart. Then, based on the stability results of fractional order systems, sufficient conditions for phase synchronization of the fractional models of Lorenz, Lü and Rössler systems are derived. The synchronization scheme that is simple and global enables synchronization of fractional order chaotic systems to be achieved without the computation of the conditional Lyapunov exponents. Numerical simulations are performed to assess the performance of the presented analysis.  相似文献   

16.
This paper considers sampled-data based chaos synchronization using observers in the presence of measurement noise for a large class of chaotic systems. We study discretized model of chaotic systems which are perturbed by white noise and employ Lyapunov-like theorems to come up with a simple yet effective observer design. For the choice of observer gain, a suboptimal criterion is obtained in terms of LMI. We present semiglobal as well as global results. The proposed scheme can also be extended for discrete-time chaotic systems. Numerical simulations have been carried out to verify the effectiveness of theoretical results.  相似文献   

17.
In this paper, the impulsive exponential synchronization problem for time-delayed coupled chaotic systems is investigated. By establishing an impulsive differential delay inequality and using the property of P-cone, some simple conditions of impulsive exponential synchronization of two coupled chaotic systems are derived. To illustrate the effectiveness of the new scheme, some numerical examples are given.  相似文献   

18.
The wavelet transform method originated by Wei et al. (2002) [19] is an effective tool for enhancing the transverse stability of the synchronous manifold of a coupled chaotic system. Much of the theoretical study on this matter is centered on networks that are symmetrically coupled. However, in real applications, the coupling topology of a network is often asymmetric; see Belykh et al. (2006)  [23], [24], Chavez et al. (2005)  [25], Hwang et al. (2005)  [26], Juang et al. (2007)  [17], and Wu (2003)  [13]. In this work, a certain type of asymmetric sparse connection topology for networks of coupled chaotic systems is presented. Moreover, our work here represents the first step in understanding how to actually control the stability of global synchronization from dynamical chaos for asymmetrically connected networks of coupled chaotic systems via the wavelet transform method. In particular, we obtain the following results. First, it is shown that the lower bound for achieving synchrony of the coupled chaotic system with the wavelet transform method is independent of the number of nodes. Second, we demonstrate that the wavelet transform method as applied to networks of coupled chaotic systems is even more effective and controllable for asymmetric coupling schemes as compared to the symmetric cases.  相似文献   

19.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

20.
Nonlinear coupling has been used to synchronize some chaotic systems. The difference evolutional equation between coupled systems, determined via the linear approximation, can be used to analyze the stability of the synchronization between drive and response systems. According to the stability criteria the coupled chaotic systems are asymptotically synchronized, if all eigenvalues of the matrix found in this linear approximation have negative real parts. There is no synchronization, if at least one of these eigenvalues has positive real part. Nevertheless, in this paper we have considered some cases on which there is at least one zero eigenvalue for the matrix in the linear approximation. Such cases demonstrate synchronization-like behavior between coupled chaotic systems if all other eigenvalues have negative real parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号