首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We address a problem of vehicle routing that arises in picking up and delivering full container load from/to an intermodal terminal. The substantial cost and time savings are expected by efficient linkage between pickup and delivery tasks, if the time of tasks and the suitability of containers for cargo allow. As this problem is NP-hard, we develop a subgradient heuristic based on a Lagrangian relaxation which enables us to identify a near optimal solution. The heuristic consists of two sub-problems: the classical assignment problem and the generalized assignment problem. As generalized assignment problem is also NP-hard, we employ an efficient solution procedure for a bin packing based problem, which replaces the generalized assignment problem. The heuristic procedure is tested on a wide variety of problem examples. The test results demonstrate that the procedure developed here can efficiently solve large instances of the problem.  相似文献   

2.
The multilevel generalized assignment problem is a problem of assigning agents to tasks where the agents can perform tasks at more than one efficiency level. A profit is associated with each assignment and the objective of the problem is profit maximization. Two heuristic solution methods are presented for the problem. The heuristics are developed from solution methods for the generalized assignment problem. One method uses a regret minimization approach whilst the other method uses a repair approach on a relaxation of the problem. The heuristics are able to solve moderately large instances of the problem rapidly and effectively. Procedures for deriving an upper bound on the solution of the problem are also described. On larger and harder instances of the problem one heuristic is particularly effective.  相似文献   

3.
The main purpose of this paper is to introduce a new composite heuristic for solving the generalized traveling salesman problem. The proposed heuristic is composed of three phases: the construction of an initial partial solution, the insertion of a node from each non-visited node-subset, and a solution improvement phase. We show that the heuristic performs very well on 36 TSPLIB problems which have been solved to optimality by other researchers. We also propose some simple heuristics that can be used as basic blocks to construct more efficient composite heuristics.  相似文献   

4.
We develop and test a heuristic based on Lagrangian relaxation and problem space search to solve the generalized assignment problem (GAP). The heuristic combines the iterative search capability of subgradient optimization used to solve the Lagrangian relaxation of the GAP formulation and the perturbation scheme of problem space search to obtain high-quality solutions to the GAP. We test the heuristic using different upper bound generation routines developed within the overall mechanism. Using the existing problem data sets of various levels of difficulty and sizes, including the challenging largest instances, we observe that the heuristic with a specific version of the upper bound routine works well on most of the benchmark instances known and provides high-quality solutions quickly. An advantage of the approach is its generic nature, simplicity, and implementation flexibility.  相似文献   

5.
Rapid advances in computing and communications technology have made distributed computing an attractive alternative for geographically dispersed organizations. A telecommunication sub-network forms the backbone of these distributed systems. In general, this paper focuses on the assignment of communication channel capacities in the presence of time variant usage patterns. Specifically, we concentrate on long-range capacity planning for organizations that construct networks by leasing communication channels from telecommunication companies. We formulate the capacity assignment problem as a 0-1 integer program that seeks to minimize total leasing cost subject to communication delay restrictions. Unlike previous models that include a single-system wide-average delay constraint, our model allows the flexibility of specifying delay restrictions by communicating node pairs. We propose an efficient heuristic, and a Lagrangian relaxation based procedure to obtain performance guarantees on the solution obtained from the heuristic.  相似文献   

6.
Facility location problems are often encountered in many areas such as distribution, transportation and telecommunication. We describe a new solution approach for the capacitated facility location problem in which each customer is served by a single facility. An important class of heuristic solution methods for these problems are Lagrangian heuristics which have been shown to produce high quality solutions and at the same time be quite robust. A primal heuristic, based on a repeated matching algorithm which essentially solves a series of matching problems until certain convergence criteria are satisfied, is incorporated into the Lagrangian heuristic. Finally, a branch-and-bound method, based on the Lagrangian heuristic is developed, and compared computationally to the commercial code CPLEX. The computational results indicate that the proposed method is very efficient.  相似文献   

7.
We present a novel Lagrangian method to find good feasible solutions in theoretical and empirical aspects. After investigating the concept of Lagrangian capacity, which is the value of the capacity constraint that Lagrangian relaxation can find an optimal solution, we formally reintroduce Lagrangian capacity suitable to the 0-1 multidimensional knapsack problem and present its new geometric equivalent condition including a new associated property. Based on the property, we propose a new Lagrangian heuristic that finds high-quality feasible solutions of the 0-1 multidimensional knapsack problem. We verify the advantage of the proposed heuristic by experiments. We make comparisons with existing Lagrangian approaches on benchmark data and show that the proposed method performs well on large-scale data.  相似文献   

8.
The routing and wavelength assignment (RWA) problem typically occurs in wavelength division multiplexing optical networks. Given a number of available wavelengths, we consider here the problem of maximising the number of accepted connections with respect to the clash and continuity constraints. We first propose a new strategy which combines two existing models. This leads to an improved column generation scheme. We also present two heuristics to compute feasible solutions: a hybrid heuristic and the integer solution at the root node of the column generation. Our approaches are compared with the best existing results on a set of classic RWA instances.  相似文献   

9.
This paper considers a new class of stochastic resource allocation problems that requires simultaneously determining the customers that a capacitated resource must serve and the stock levels of multiple items that may be used in meeting these customers’ demands. Our model considers a reward (revenue) for serving each assigned customer, a variable cost for allocating each item to the resource, and a shortage cost for each unit of unsatisfied customer demand in a single-period context. The model maximizes the expected profit resulting from the assignment of customers and items to the resource while obeying the resource capacity constraint. We provide an exact solution method for this mixed integer nonlinear optimization problem using a Generalized Benders Decomposition approach. This decomposition approach uses Lagrangian relaxation to solve a constrained multi-item newsvendor subproblem and uses CPLEX to solve a mixed-integer linear master problem. We generate Benders cuts for the master problem by obtaining a series of subgradients of the subproblem’s convex objective function. In addition, we present a family of heuristic solution approaches and compare our methods with several MINLP (Mixed-Integer Nonlinear Programming) commercial solvers in order to benchmark their efficiency and quality.  相似文献   

10.
In this paper we propose a planning procedure for serving freight transportation requests in a railway network with fast transfer equipment at terminals. We consider a transportation system where different customers make their requests (orders) for moving boxes, i.e., either containers or swap bodies, between different origins and destinations, with specific requirements on delivery times. The decisions to be taken concern the route (and the corresponding sequence of trains) that each box follows in the network and the assignment of boxes to train wagons, taking into account that boxes can change more than one train and that train timetables are fixed.The planning procedure includes a pre-analysis step to determine all the possible sequences of trains for serving each order, followed by the solution of a 0-1 linear programming problem to find the optimal assignment of each box to a train sequence and to a specific wagon for each train in the sequence. This latter is a generalized assignment problem which is NP-hard. Hence, in order to find good solutions in acceptable computation times, two MIP heuristic approaches are proposed and tested through an experimental analysis considering realistic problem instances.  相似文献   

11.
In this paper, we develop a Lagrangian decomposition based heuristic method for general quadratic binary programs (QBPs) with linear constraints. We extend the idea of Lagrangian decomposition by Chardaire and Sutter (Manag Sci 41(4):704–712, 1995) and Billionnet and Soutif (Eur J Oper Res 157(3):565–575, 2004a, Inf J Comput 16(2):188–197, 2004b) in which the quadratic objective is converted to a bilinear function by introducing auxiliary variables to duplicate the original complicating variables in the problem. Instead of using linear constraints to assure the equity between the two types of decision variables, we introduce generalized quadratic constraints and relax them with Lagrangian multipliers. Instead of computing an upper bound for a maximization problem, we focus on lower bounding with Lagrangian decomposition based heuristic. We take advantage of the decomposability presented in the Lagrangian subproblems to speed up the heuristic and identify one feasible solution at each iteration of the subgradient optimization procedure. With numerical studies on several classes of representative QBPs, we investigate the sensitivity of lower-bounding performance on parameters of the additional quadratic constraints. We also demonstrate the potentially improved quality of preprocessing in comparison with the use of a QBP solver.  相似文献   

12.
The generalized traveling salesman problem is a variation of the well-known traveling salesman problem in which the set of nodes is divided into clusters; the objective is to find a minimum-cost tour passing through one node from each cluster. We present an effective heuristic for this problem. The method combines a genetic algorithm (GA) with a local tour improvement heuristic. Solutions are encoded using random keys, which circumvent the feasibility problems encountered when using traditional GA encodings. On a set of 41 standard test problems with symmetric distances and up to 442 nodes, the heuristic found solutions that were optimal in most cases and were within 1% of optimality in all but the largest problems, with computation times generally within 10 seconds. The heuristic is competitive with other heuristics published to date in both solution quality and computation time.  相似文献   

13.
We propose relaxation heuristics for the problem of maximum profit assignment of n tasks to m agents (n > m), such that each task is assigned to only one agent subject to capacity constraints on the agents. Using Lagrangian or surrogate relaxation, the heuristics perform a subgradient search obtaining feasible solutions. Relaxation considers a vector of multipliers for the capacity constraints. The resolution of the Lagrangian is then immediate. For the surrogate, the resulting problem is a multiple choice knapsack that is again relaxed for continuous values of the variables, and solved in polynomial time. Relaxation multipliers are used with an improved heuristic of Martello and Toth or a new constructive heuristic to find good feasible solutions. Six heuristics are tested with problems of the literature and random generated problems. Best results are less than 0.5% from the optimal, with reasonable computational times for an AT/386 computer. It seems promising even for problems with correlated coefficients.  相似文献   

14.
We propose a Lagrangian heuristic for facility location problems with concave cost functions and apply it to solve the plant location and technology acquisition problem. The problem is decomposed into a mixed integer subproblem and a set of trivial single-variable concave minimization subproblems. We are able to give a closed-form expression for the optimal Lagrangian multipliers such that the Lagrangian bound is obtained in a single iteration. Since the solution of the first subproblem is feasible to the original problem, a feasible solution and an upper bound are readily available. The Lagrangian heuristic can be embedded in a branch-and-bound scheme to close the optimality gap. Computational results show that the approach is capable of reaching high quality solutions efficiently. The proposed approach can be tailored to solve many concave-cost facility location problems.  相似文献   

15.
We discuss generalized travelling-salesman problems where nodes are visited either once or not, and a penalty cost is incurred for each unvisited node. The generalization includes the longest-path problem and the shortest-path problem with specified nodes to be visited. A new transformation of generalized into standard travelling-salesman problem is presented. We give computational results for the shortest-path problem with specified nodes. The transformation makes it possible to solve symmetric problems with a relatively large number of specified nodes, which cannot be solved by previously published algorithms based on a linear assignment relaxation. Furthermore, we show how to obtain improved lower bounds for a special Euclidean-type variant.  相似文献   

16.
We study a class of capacity acquisition and assignment problems with stochastic customer demands often found in operations planning contexts. In this setting, a supplier utilizes a set of distinct facilities to satisfy the demands of different customers or markets. Our model simultaneously assigns customers to each facility and determines the best capacity level to operate or install at each facility. We propose a branch-and-price solution approach for this new class of stochastic assignment and capacity planning problems. For problem instances in which capacity levels must fall between some pre-specified limits, we offer a tailored solution approach that reduces solution time by nearly 80% over an alternative approach using a combination of commercial nonlinear optimization solvers. We have also developed a heuristic solution approach that consistently provides optimal or near-optimal solutions, where solutions within 0.01% of optimality are found on average without requiring a nonlinear optimization solver.  相似文献   

17.
We propose a new heuristic for the solution of the quadratic assignment problem. The heuristic combines ideas from tabu search and genetic algorithms. Run times are very short compared with other heuristic procedures. The heuristic performed very well on a set of test problems.  相似文献   

18.
《Applied Mathematical Modelling》2014,38(17-18):4493-4511
In mixed-product assembly line sequencing, the production resources required for the assembly lines should be scheduled to minimize the overall cost and meet customer demand. In this paper, we study an assembly line sequencing problem for the door-lock industry in Taiwan and develop an integer programming formulation with realistic constraints. The complex solution space makes the resulting program difficult to solve using commercial optimization packages. Therefore, a heuristic based on the Lagrangian relaxation principle is developed to solve this problem efficiently. We evaluate the efficiency of the developed Lagrangian relaxation heuristic by comparing its solutions with those obtained using a commercial optimization package: the computational results show that the developed heuristic solves the real-world problem faster than the optimization package by almost 15 times in CPU time at a comparable solution quality.  相似文献   

19.
Optimization heuristics are often compared with each other to determine which one performs best by means of worst-case performance ratio reflecting the quality of returned solution in the worst case. The domination number is a complement parameter indicating the quality of the heuristic in hand by determining how many feasible solutions are dominated by the heuristic solution. We prove that the Max-Regret heuristic introduced by Balas and Saltzman (Oper. Res. 39:150–161, 1991) finds the unique worst possible solution for some instances of the s-dimensional (s≥3) assignment and asymmetric traveling salesman problems of each possible size. We show that the Triple Interchange heuristic (for s=3) also introduced by Balas and Saltzman and two new heuristics (Part and Recursive Opt Matching) have factorial domination numbers for the s-dimensional (s≥3) assignment problem.  相似文献   

20.
In the partial accessibility constrained vehicle routing problem, a route can be covered by two types of vehicles, i.e. truck or truck + trailer. Some customers are accessible by both vehicle types, whereas others solely by trucks. After introducing an integer programming formulation for the problem, we describe a two-phase heuristic method which extends a classical vehicle routing algorithm. Since it is necessary to solve a combinatorial problem that has some similarities with the generalized assignment problem, we propose an enumerative procedure in which bounds are obtained from a Lagrangian relaxation. The routine provides very encouraging results on a set of test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号