首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Novel nanocomposite polymeric membranes containing nanosized (30–100 nm) polyaniline (PANI) particles dispersed in poly(vinyl alcohol) (PVA) were prepared and used in the pervaporation separation of water–isopropanol feed mixtures ranging from 10 to 50 mass% of water at 30 °C. Of the three nanocomposite membranes prepared, the membrane containing 40:60 surface atomic concentration ratio of PANI:PVA produced the highest selectivity of 564 compared to a value of 77 observed for the plain PVA membrane. Flux of the nanocomposite membranes was lower than those observed for the plain PVA membrane, but selectivity improved considerably. Membranes were characterized by differential scanning calorimetry, dynamic mechanical thermal analyzer, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The highest selectivity with the lowest flux was observed for 10 mass% water containing feed mixture. Flux increased with increasing amount of water in the feed, but selectivity decreased considerably. These results were attributed to the acid-doped PANI particles in the PVA membrane as a result of change in the micromorphology of the nanocomposite membranes. In addition, molar mass between cross-links and fractional free volume of the membranes are responsible for the varying membrane performance. Temperature effect on permeability was investigated for 10 mass% water containing feed with the membrane containing higher concentration of PANI particles, the presence of which could be responsible for varied effect of water permeation through the membrane. Membranes of this study could remove as much as 98% of water from the feed.  相似文献   

2.
Sodium alginate and hydroxyethylcellulose blend membranes were prepared by solution casting, crosslinked with glutaraldehyde and urea–formaldehyde–sulfuric acid mixture. Crosslinking was confirmed by Fourier transform infrared spectroscopy, while the blend compatibility was studied by differential scanning calorimetry and scanning electron microscopy. Membranes were tested for pervaporation separation of feed mixtures ranging from 10 to 50 mass% water in water + 1,4-dioxane and water + tetrahydrofuran mixtures at 30 °C. For 10 mass% of the feed mixture, pervaporation experiments were also carried out at higher temperatures (40 and 50 °C). By increasing the temperature, a slight increase in flux with a considerable decrease in selectivity was observed for all the membranes and for both the mixtures. The blend membranes exhibited different pervaporation performance for both the binary mixtures investigated. For water + 1,4-dioxane mixture, the pervaporation performance did not improve much after blending, whereas for water + tetrahydrofuran mixture, the pervaporation performance has improved considerably over that of plain sodium alginate membrane.  相似文献   

3.
Pervaporation (PV) separation of water–acetonitrile mixture using sodium alginate (NaAlg) based mixed matrix membranes (MMM) comprising different amounts of nano NaA zeolite (10, 20 and 30 wt%) is investigated in various concentrations of water and temperatures. The prepared membranes are modified by sulfosuccinic acid (SSA) as a crosslinking agent. NaAlg-NaA/SSA membranes are synthesized by a solution casting technique. The process and membrane performance including separation factor, flux and activation energy of permeation are determined. Results reveal that adding of nano zeolite may lead to an increase in the flux and the separation factor of sodium alginate membrane up to 123 and 169%. In addition, using MMM in dehydration of a feed containing 30 wt% of water shows much better performance than alginate membrane. Furthermore, the activation energy of water permeation through MMM is predicted lower than sodium alginate membrane which reflects the facilitated permeation of water through MMM.  相似文献   

4.
Sodium alginate (SA) is a progressive material for membrane fabrication. The technological development of SA-based membranes has made a significant contribution to the separation techniques, especially in aqueous organic solutions. The outstanding performance of SA is attributed to its outstanding structural flexibility and hydrophilicity. In view of structural characteristics, SA membranes have immense utilization in the pervaporation separation of organics. Among various organics, dehydration of aqueous ethanol is employed as a standard to check the success of pervaporation (PV) membrane. Because ethanol and water have comparable molecular sizes, thus difficult to extract water from aqueous ethanol mixtures than it is for other organics. A literature survey shows that wide-ranging data are available on the PV performance of SA and its modified membranes. In this context, the present review addresses the recent advances made in SA membranes for enhanced ethanol dehydration performance during the last decade. Available data since 2010 has been compiled for grafted, crosslinked, blend, mixed matrix, and composite hybrid sodium alginate membranes in terms of separation factor, permeation flux, and pervaporation separation index PSI. The data are assessed with reference to the effect of feed composition, membrane selectivity, flux, and swelling behavior.  相似文献   

5.
Novel two-ply dense composite membranes were prepared using successive castings of sodium alginate and chitosan solutions for the pervaporation dehydration of isopropanol and ethanol. Preparation and operating parameters namely polymer types facing to the feed stream, NaOH treatment for the regeneration of chitosan, and crosslinking system types were investigated using the factorial design method. It was shown that these parameters were all critical to the performance of the membrane in the form of the main and interaction effects. The pervaporation performance of the two-ply membrane with its sodium alginate layer facing the feed side and crosslinked or insolubilized in sulfuric acid solution was compared with the pure sodium alginate and the chitosan membranes in terms of the flux and separation factors. It was shown that although its flux was lower than that of the pure sodium alginate and chitosan membranes, the separation factors at various alcohol concentrations were in between values for the two pure membranes. For the dehydration of 90 wt% isopropanol–water mixtures the performance of the two-ply membrane which was moderately crosslinked in formaldehyde was found to match the high performance of the pure sodium alginate membrane. This two-ply membrane had fluxes of 70 g/m2 h at 95% EtOH, 554 g/m2 h at 90% PrOH and separation factors of 1110 at 95% EtOH, 2010 at 90% PrOH and its mechanical properties were better than that of the pure sodium alginate membrane.  相似文献   

6.
Pervaporation (PV) separation of water + isopropanol and water + 1,4-dioxane mixtures has been attempted using the blend membranes of poly(vinyl alcohol) (PVA) with 5 wt.% of poly(methyl methacrylate) (PMMA). These results have been compared with the plain PVA membrane. Both plain PVA and PVA/PMMA blend membranes have been crosslinked with glutaraldehyde in an acidic medium. The membranes were characterized by differential scanning calorimetry and universal testing machine. Pervaporation separation experiments have been performed at 30 °C for 10, 15, 20, 30 and 40 wt.% of feed water mixtures containing isopropanol as well as 1,4-dioxane. PVA/PMMA blend membrane has shown a selectivity of 400 for 10 wt.% of water in water + isopropanol feed, while for water + 1,4-dioxane feed mixture, membrane selectivity to water was 104 at 30 °C. For both the feed mixtures, selectivity for the blend membrane was higher than that observed for plain PVA membrane, but flux of the blend membrane was lower than that observed for the plain PVA membrane. Membranes of this study are able to remove as much as 98 wt.% of water from the feed mixtures of water + isopropanol, while 92 wt.% of water was removed from water + 1,4-dioxane feed mixtures at 30 °C. Flux of water increased for both the feed mixtures, while the selectivity decreased at higher feed water concentrations. The same trends were observed at 40 and 50 °C for 10, 15 and 20 wt.% of water mixtures containing isopropanol as well as 1,4-dioxane feed mixtures, which also covered their azeotropic composition ranges. Membrane performance was studied by calculating flux (Jp), selectivity (), pervaporation separation index (PSI) and enrichment factor (β). Permeation flux followed the Arrhenius trend over the range of temperatures investigated. It was found that by introducing a hydrophobic PMMA polymer into a hydrophilic PVA, the selectivity increased dramatically, while flux decreased compared to plain PVA, due to a loss in PVA chain relaxation.  相似文献   

7.
Alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures were prepared and tested. The sodium alginate membrane was water soluble and mechanically weak but it showed promising performance for the pervaporation dehydration. To control the water solubility the sodium alginate membrane was crosslinked ionically using various divalent and trivalent ions. Among them the alginate membrane crosslinked with Ca2+ ion showed the highest pervaporation performance in terms of the flux and separation factors.  相似文献   

8.
Pervaporative performances were investigated for dehydration of water–acetonitrile using nanocomposite metal oxide and Pervap® 2202 membranes. Poly (vinyl alcohol) based nanocomposite metal oxide membranes were prepared through co-precipitation of different amounts of Fe (II) and Fe (III). The freestanding nanocomposite metal oxide membranes were characterized by Transmission electron microscopy and X-ray diffraction. Sorption studies evaluated the extent of interaction and degree of swelling of the membranes. Fe containing PVA polymer matrix showed improved flux and selectivity. In order to observe simultaneous effect of flux and selectivity, pervaporation separation index showed 10 wt.% iron oxide containing membrane is the most amongst all tested. The diffusion coefficients were calculated using pervaporation results and sorption kinetics data. An attempt was made to predict sorption selectivity thermodynamically. PV separation factor was observed to be governed by sorption and/or diffusion phenomena and sorption selectivity was found to be higher than PV separation factor. Prediction of concentration profile in the membrane was also attempted and the results showed that water concentration in the membrane drops down with increase in membrane thickness.  相似文献   

9.
Crosslinked dense poly(vinyl alcohol) (PVA) membranes with different degrees of hydrolysis were prepared and used in sorption and pervaporation of isopropanol (IPA)/water mixtures. Partial flux of water permeation was increased with the water content in the liquid mixture, but the partial flux of IPA due to the coupling effect of sorption and permeation, had a maximum value. The degree of PVA hydrolysis and the feed temperature influenced the permeation flux and water selectivity due to crystallinity and the number of polar side groups in PVA. Thus the partial flux of water and IPA was inversely proportional to the degree of PVA hydrolysis and the selectivity of PVA for water was proportional to the hydrolysis level of PVA.  相似文献   

10.
《先进技术聚合物》2018,29(9):2467-2476
Poly (caprolactone) membranes with addition of different poly (ethylene glycol) concentrations were prepared for separation of water/isopropanol azeotropic mixture by pervaporation process. Different characterization tests including Fourier transform infrared, scanning electron microscopy, water contact angle, and thermogravimetric analysis were carried out on the prepared membranes. In addition, the effect of poly (ethylene glycol) PEG content on the swelling degree and the performance of the prepared membranes in pervaporation process were investigated. According to the obtained results, all the membranes were water selective and the blend membrane containing 3 wt% PEG exhibited the best pervaporation performance with a water flux of 0.517 kg/m2 hour and separation factor of 1642 at the ambient temperature. Hydrophilicity improvement of the blend membranes was confirmed by constant decrease in water contact angle of the membranes as PEG content increased in the casting solution. Scanning electron microscopy cross‐sectional images indicated that the blend membranes containing PEG had a closed cellular structure. Furthermore, mechanical and thermal properties of the membranes decreased by adding PEG.  相似文献   

11.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

12.
Using a solution technique, chitosan-based polyelectrolyte complexes (PECs) were developed as pervaporation membranes by incorporating phosphotungstic acid (PTA). The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Membranes were tested for their ability to separate water–isopropanol mixtures by pervaporation in the temperature range of 30–50 °C. The experimental results demonstrated that both flux and selectivity were increased simultaneously with increasing PTA content in the membrane. The permeation flux of pure chitosan membrane was increased dramatically from 4.13 to 11.70 × 10−2 kg/m2 h and correspondingly its separation factor was increased from 4490 to 11,241 and then decreased to 7490 at 30 °C for 10 mass% of water in the feed. The total flux and flux of water were found to be almost overlapping particularly for PECs membranes, suggesting that these could be used effectively to break the azeotropic point of water–isopropanol mixtures. From the temperature dependency of diffusion and permeation values, the Arrhenius activation parameters were estimated and discussed in the context of membranes efficiency. The pure chitosan and a small amount of PTA-incorporated PECs membranes exhibited positive heat of sorption while other PECs membranes exhibited negative heat of sorption, giving exothermic contribution.  相似文献   

13.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction and differential scanning calorimetry. The remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as crosslinking agent. The membrane containing 1:2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values, obtained for water permeation being lower than those of acetic acid permeation values, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal as due to higher selective nature of membranes. Further, the activation energy values for permeation of water and diffusion of water are almost equivalent, suggesting that both diffusion and permeation contribute almost equally to the pervaporation process. The negative heat of sorption values (ΔHs) for water in all the membranes suggests the Langmuir's mode of sorption.  相似文献   

14.
In order to study, how the membrane hydrophilicity influences the pervaporation (PV) separation properties in dehydration of alcohols, two polyelectrolyte complex (PELC) membranes, based on interfacial reaction of polyanionic sodium salt of sulfoethyl cellulose (SEC) with polycationic poly[dimethyl(diallyl)ammonium chloride] (pDMDAAC), or cationic surfactant benzyl(dodecyl)dimethylammonium chloride (BDDDMAC), were prepared and tested. Contact angle measurements on membrane surfaces made in various media showed that the membrane hydrophilicity, in the sense of water wettability, had not influence neither to flux nor selectivity in the PV dehydration process. On the contrary, the membrane wettability determined by contact angle measurements in the real water/alcohol separation mixture, correlated very well with the PV experiments. These findings are confronted with the solution-diffusion PV model.  相似文献   

15.
For the vapor permeation of ethanol-water mixtures, two types of dense sodium alginate (SA) membranes have been prepared: a nascent SA membrane and crosslinked SA membranes with glutaraldehyde (GA). In the vapor permeation of the concentrated ethanol-water mixtures through the SA membranes, the effects of feed temperature, cell temperature and crosslinking density in the membrane were investigated on the membrane performance, and a comparison of vapor permeation process was made with pervaporation. SA membranes having different crosslinking gradients have been fabricated by exposing the nascent membrane to different GA content of reaction solutions. The extent of the gradient was controlled by the exposing time. The permeation performance of the membranes will be discussed with the extent of the gradient. An optimal crosslinking gradient was determined in terms of flux and membrane stability. The separation of ethanol-water mixtures through the membrane with the optimal crosslinking gradient was carried out by vapor permeation and the permeation performance will be discussed, and compared with pervaporation.  相似文献   

16.
Sulfonated cardo polyetherketone (SPEK-C) and poly(vinyl alcohol) (PVA) blend membranes were prepared by solution casting method and used in pervaporation (PV) dehydration of acetic acid. The membranes were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and contact angle meter. The results show that thermal crosslinking occurred to the membrane under high temperature annealing. The effective d-spacing (inter-segmental spacing) decreased with PVA content decreasing. The hydrophilicity of the blend membrane increased with SPEK-C content increasing. Swelling and sorption experiments show that the swelling degree of the blend membrane increased, however both the sorption and diffusion selectivities decreased with increasing PVA content. The diffusion selectivity is higher than the sorption selectivity. This suggests that PV dehydration of acetic acid is dominated by the diffusion process. The pervaporation separation index (PSI) of the membrane increases with increasing PVA content and arrives at a maximum when the SPEK-C/PVA ratio is 3/2, then decreases with further addition of PVA. The membrane has an encouraging separation performance with a flux of 492 g m−2 h−1 and separation factor of 59.3 at 50 °C at the feed water content 10 wt%.  相似文献   

17.
Blend membranes of poly(vinyl alcohol) (PVA) and nylon 66 (NYL) were synthesized and crosslinked with glutaraldehyde (GA) and assessed for their suitability in dehydrating 2-butanol by pervaporation (PV). These blends were subjected to sorption studies to determine the extent of interaction and degree of swelling in pure liquids as well as binary mixtures. Wide-angle X-ray diffraction (WAXD) and thermal gravimetric analysis (TGA) were carried out to investigate changes in crystallinity and thermal stability, respectively. The effect of experimental parameters such as feed water concentration, permeate pressure and barrier thickness on membrane flux and selectivity was evaluated. The membranes were found to have good potential for breaking the azeotrope of 27.6 wt.% water with a flux of 3.07 kg/m2 h 10 μm and selectivity of 26.5. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas opposite trends were observed in case of flux. Higher permeate pressure caused a reduction in both flux and selectivity. These effects were clearly elucidated.  相似文献   

18.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

19.
Calcium alginate-chitosan (CA/CS) blended membranes were prepared and crosslinked with maleic anhydride (MA) for the pervaporation (PV) separation of ethylene glycol (EG)/water mixtures at 30°C. The structure and properties of blend membranes were studied with the aid of FTIR, XRD, TGA, and SEM. The effect of experimental parameters such as feed composition, membrane thickness, and permeate pressure on separation performance of the MA crosslinked membranes were determined in terms of flux, selectivity, and pervaporation separation index. Sorption studies were carried out to evaluate the extent of interaction and degree of swelling of the blend membranes in pure, as well as in binary mixtures. The experimental results suggested that the crosslinked membrane (M-CA/CS) exhibited a good selectivity of 302 at a normalized flux of 0.38 kg.m? 2.h? 1.10 μ m at 30°C for 96.88 wt% EG aqueous solution.  相似文献   

20.
A novel organic dehydration membrane consisting of aminated polyacrylontrile (PAN) microporous membrane as sublayer, alginate coating as top layer has been prepared and characterized by pervaporation experiment. The influence of hydrolysis and amination of the microporous support layer on selectivity and flux was studied and it was shown that amination of the sublayer improved pervaporation performance of the composite membrane greatly. The counter cation of alginate coatings as dense separating layer also influenced separation properties of the membrane, which was better for K+ than for Na+. This novel composite membrane with K+ as counter ion has a high separation factor of 1116 and a good permeation rate of 350 g/m2 h for pervaporation of 90 wt.% ethanol aqueous solution at 70°C, higher separation factors and fluxes for n-PrOH/water, i-PrOH/water, acetone/water and dioxane/water systems. The results show that the separation factor and flux of this membrane increase with raising the operating temperature. At the same time, SEM micrographs show that the hydrolysis and amination of PAN microporous membrane change its pore structure. From the results it can be concluded that pore structure of the sublayer in addition to its chemical structure also make influence of separation properties of the composite membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号