首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
Scattering of microwaves by an ensemble of nonspherical ice particles is studied using a scattering model based on a second-order perturbation series at 5.6 GHz (C-band). Particle shapes are defined using a Gaussian random sphere geometry. Particle inhomogeneity is taken into account using three different effective-medium approximations: Maxwell–Garnett, Bruggeman, and Coherent Potential mixing rules. By systematically varying particle size, liquid water content, Gaussian shape parameters, and internal structure, it is found that liquid water content is the most important factor for the co-polarized backscattering; the shape is relatively unimportant. For depolarized backscattering, the shape is of fundamental importance, although the other factors are significant too. Surprisingly, the type of nonsphericity is found to be important for depolarization even for scatterers that are in the Rayleigh region: elongated targets depolarize clearly stronger than more irregular shapes. This finding seems not to be strongly size dependent, at least for size parameters from 0.0059 to 0.47, and indicates that the accurate modeling of shape is important for polarization quantities even in the Rayleigh region.  相似文献   

2.
By invoking ideas about the distribution of the optical paths of partial components of the scattered field, we obtain an expression for estimating the degree of residual polarization of light that is incoherently backscattered from a disordered multiply scattering semi-infinite medium illuminated by linearly polarized light. In the backscattering regime, the depolarization length of the linearly polarized light in the disordered medium becomes smaller with the passage from the isotropic to anisotropic scattering. Experiments with model media featuring substantially anisotropic scattering (the anisotropy parameter of 0.90 ≤ g ≤ 0.95) demonstrated that for backscattering of linearly polarized light, the depolarization length is close to the transport length of the scattering medium.  相似文献   

3.
A fast Monte Carlo simulation scheme is developed to assess the impact of multiple scattering on space-based lidar backscattering depolarization measurements. The specific application of our methodology is to determine cloud thermodynamic phase from satellite-based lidar depolarization measurements. Model results indicate that multiple scattering significantly depolarizes backscatter return from water clouds. Multiple scattering depolarization is less significant for non-spherical particles. There are sharp contrasts in the depolarization profile between a layer of spherical particles and a layer of non-spherical particles. Although it is not as obvious as ground-based lidar observations, it is likely that we can identify cloud phase not only for a uniform cloud layer, but also for overlapping cloud layers where one layer contains ice and the other water droplets.  相似文献   

4.
5.
We measure polarization resolved reflections from ordered vertical silicon nanowire arrays of two different diameters and compare the results to rigorous coupled wave analysis simulations. Ellipsometric analysis based on anisotropic effective-medium approximation is used to fit the experimental data and estimate the diameter and length of the nanowires. In addition, depolarization of light is observed for wavelengths below 400 nm.  相似文献   

6.
This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

7.
Abstract

This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

8.
We have studied the influence of magneto-optical Faraday rotation on coherent backscattering of light experimentally, theoretically and by computer simulations of Monte-Carlo type. The consistency of these three approaches reveals new aspects of the propagation of vector waves in turbid media with and without Faraday rotation. Experimentally, we have demonstrated that the Faraday rotation may almost completely destroy the reciprocity of light paths. However, as shown by the simulations, the cone of coherent backscattering may not only be destroyed but also shifted off the exact backscattering direction, parallel to the magnetic field, as long as the amount of circular polarization is not completely destroyed by the multiple scattering. The relationship between coherent backscattering, depolarization and Faraday rotation are explained by a simple path model of vector waves. This leads to a new characteristic correlation length required to properly describe the influence of Faraday rotation on multiple light scattering. Received 28 January 2000  相似文献   

9.
We propose a modified geometrical-optics approximation (MGO). It is based on the solution of the Helmholtz equation in the form of a series in which the main term describes the zero-order geometrical-optics approximation. The proposed method allows one to take into account an exponentially small backscattering in smoothly inhomogeneous media and thus improves the geometrical-optics approximation. In the case of forward scattering, the solution obtained is reduced to the conventional geometrical-optics series over negative powers of the wavenumber. We estimate the backscattering using the perturbation technique for rays and determine the conditions under which the backscattered field agrees with the Born approximation of scattering theory. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 43, No. 2, pp. 106–114, January 2000.  相似文献   

10.
Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l≳λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

11.
Abstract

Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l?λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

12.
Ponomarenko SA  Wolf E 《Optics letters》2002,27(20):1770-1772
We investigate the inverse scattering problem for statistically homogeneous, isotropic random media under conditions of strong fluctuations of optical wavefields. We present a method for determining the spectral density of the dielectric constant fluctuations in such media from scattering of partially coherent light. The method may find applications to a wide class of turbulent media such as the turbulent atmosphere and certain turbulent plasmas where backscattering and depolarization effects are negligible.  相似文献   

13.
A sphere queue model is introduced to calculate Mueller matrices of turbid media. Combined with the single scattering approximation, the backscattering Mueller matrices of turbid media can be computed rapidly by Mie theory. The numerical results agree with the azimuthal dependences of backscattering Mueller matrices' patterns from turbid media, which indicates that the major contribution to the Mueller matrices' patterns comes from the single scattering of the sphere queue, and the multiple scattering considered as a high-order correction does not change the patterns. The numerical analysis reveals that the contrast of Mueller matrices' patterns will decrease with increase of the concentration of media and the distance from the incident point.  相似文献   

14.
In this paper, based on the fundamental formulae of the first-order and second-order Kirchhoff approx-imation mad with consideration of the shadowing effect, the backscattering enhancement of the one-dimensional very rough fractal sea surface with Pierson-Moskowitz spectrum is studied under the second-order Kirchhoff approximation at microwave frequency. The numerical results are compared with those of the first-order Kirchhoff approximation and integral equation method. The dependencies of the bistatic scattering cross section and the backscattering enhancement on the incident angle, fractal dimension, and windspeed over the sea surface are analyzed in detail.  相似文献   

15.
透射光偏振度与散射次数关系的研究   总被引:4,自引:2,他引:2  
偏振态与散射次数的关系对于提取深入组织内部的后向散射光有很重要的价值.本文分析了透射光的偏振度与光在介质中的散射次数的关系,给出了偏振光完全失去偏振态所需的散射次数,并用直接散射的实验方法进行了验证,得出当散射次数为14次时偏振光将失去其偏振特性的结论.  相似文献   

16.
Multiple light scattering by director fluctuations in nematic liquid crystals is considered. A uniform director orientation is assumed to be specified by an applied magnetic field. The coherent backscattering effect, which consists in the presence of a sharp light backscattering peak, is studied. The Bethe-Salpeter equation is used to calculate the multiple scattering intensity taking into account the contributions of ladder and cyclic diagrams. An analytical expression for the angular and polarization dependences of the coherent backscattering intensity is obtained in terms of the diffusion approximation. The calculation and experimental results are compared. The developed theory is shown to qualitatively describe the elliptical shape of the backscattering cone, to explain the absence of a coherent contribution for crossed polarizations, and to calculate the relative peak height.  相似文献   

17.
刘伟  郭立新  孟肖  郑帆 《物理学报》2013,62(14):144213-144213
研究了新月形沙丘粗糙面的二次极化电磁散射. 结合射线追踪理论, 由一次散射面元的反射场照射到二次散射面元, 采用基尔霍夫近似推导了二次散射面元的二次极化散射场. 计算结果表明二次极化散射结果在特定的角度和类型范围内有显著影响. 在电磁波射向背风坡时可以发现其同极化散射截面在入射角较大时大于其他入射方向的结果, 入射角在休止角附近时的交叉极化散射截面出现峰值, 以及前后狭长沙丘之间的二次极化散射特别突出. 本文结果可用于反演分析沙漠地区的风场信息. 关键词: 新月形沙丘 二次极化散射 射线追踪 休止角  相似文献   

18.
Enhanced backscatterings from the disordered dense media are investigated by means of the Monte Carlo simulation. On the basis of the Rayleigh-Debye scattering theory, numerical simulations demonstrate the dependences of the peak, width and spatial anisotropy of enhanced intensity distributions on the size of scattering particles. Discussions are made by decomposing the backscattering intensity to the contributions with different scattering orders. As a result, it is shown that the particle-size dependence of the peak and width is described by the probability density function of the scattering order and the mean free pathlength. It is also shown that the spatial anisotropy of the intensity peak is described by the depolarization at each scattering event and the extinction in propagation within the random media.  相似文献   

19.
J. C. Phillips 《哲学杂志》2013,93(16):1949-1962

Electron-phonon interactions appear to explain some of, but not all, the features of the dispersive kinks in recently observed by angle-resolved photoemission spectroscopy. The remaining anomalies have led to suggestions that magnon, and not phonon, interactions are involved. If one abandons the effective-medium approximation and replaces it with dopant-centred filamentary percolation, a picture emerges that is consistent not only with the photoemission experiments but also with tunnelling, infrared and neutron scattering data.  相似文献   

20.
The effect of phase vortices on the enhanced coherent backscattering from volume scattering media is studied theoretically and experimentally. The experimental results are well described by a theoretical model based on the diffusion approximation corrected for small path lengths contributions. Based on this approach, a self-referencing method for measuring the optical characteristics of a multiple scattering medium can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号