首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Absolute cross sections for electron-impact single ionization, dissociative excitation and dissociative ionization of the ethynyl radical ion (C2D+)^+) have been measured for electron energies ranging from the corresponding reaction thresholds to 2.5 keV. The animated crossed electron-ion beam experiment is used and results have been obtained for the production of C2D2+, C2+, C2+_2^+ , CD+, C+ and D+. The maximum of the cross section for single ionization is found to be (2.01 ± 0.02) × 10-17 cm2, at the incident electron energy of 105 eV. Absolute total cross sections for the various singly charged fragments production are observed to decrease by a factor of almost three, from the largest cross-section measured for C+, over C2+_2^+ and CD+ down to that of D+. The maxima of the cross sections are obtained to be (14.5 ± 0.5) × 10-17 cm2 for C2+_2^+, (12.1 ± 0.1) × 10-17 cm2 for CD+, (27.7 ± 0.2) × 10-17 cm2 for C+ and (11.1 ± 0.8) × 10-17 cm2 for D+. The smallest cross section is measured to be (1.50 ± 0.04) × 10-18 cm2 for the production of the doubly charged ion C2+. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic energy release distributions of dissociation fragments are seen to extend from 0 to 6 eV for the heaviest fragment C2+_2^+, up to 11.0 eV for CD+, 14.2 eV for C+ and 11.2 eV for D+ products.  相似文献   

2.
Absolute cross-sections have been measured for electron-impact dissociative excitation and ionization of CD2+ leading to formation of CD22+, CD+, C+, D2+ and D+. The animated crossed-beams method is applied in the energy range from the reaction threshold up to 2.5 keV. The maximum total cross-sections are found to be (1.2±0.1)×10-17 cm2, (6.1±0.7)×10-17 cm2, (6.4±0.7)×10-17 cm2, (26.3±3.8)×10-19 cm2 and (14.9±1.4)×10-17 cm2 for CD22+, CD+, C+, D2+ and D+ respectively. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product, which are of significant interest in fusion plasma edge modelling and diagnostics. Conforming to the scheme recently applied in the CD4+ and in the CD3+ articles, the cross-sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic-energy-release distributions are determined for each ionic fragment at selected electron energies.  相似文献   

3.
Absolute cross-sections for electron-impact dissociative ionization of C2 H2+ and C2 D2+ to CH+, C+, C2+ , H+, CH2+ and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C2+ (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH2+ (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H2+ ( C2 D2+ )\left( {\rm C}_2 {\rm D}_2^+ \right), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.  相似文献   

4.
Absolute cross-sections have been measured for electron-impact dissociativeexcitation and ionization of CD 2 + leading toformation of CD 2 2+ , CD+, C+,D 2 + and D+. The animated crossed-beams methodis applied in the energy range from the reaction threshold up to 2.5 keV.The maximum total cross-sections are found to be (1.2±0.1)×10-17 cm2, (6.1±0.7)×10-17 cm2, (6.4±0.7)×10-17 cm2, (26.3±3.8)×10-19 cm2 and (14.9±1.4)×10-17 cm2 forCD 2 2+ , CD+, C+,D 2 + and D+ respectively. Individualcontributions for dissociative excitation and dissociative ionization aredetermined for each singly-charged product, which are of significantinterest in fusion plasma edge modelling and diagnostics. Conforming to thescheme recently applied in the CD 4 + and in theCD 3 + articles, the cross-sections are presented inclosed analytic forms convenient for implementation in plasma simulationcodes. Kinetic-energy-release distributions are determined for each ionicfragment at selected electron energies.  相似文献   

5.
Absolute cross-sections for electron-impact ionization and dissociation of C2H2+ and C2D2+ have been measured for electron energies ranging from the corresponding thresholds up to 2.5 keV. The animated crossed beams experiment has been used. Light as well as heavy fragment ions that are produced from the ionization and the dissociation of the target have been detected for the first time. The maximum of the cross-section for single ionization is found to be (5.56 ± 0.03)× 10-17 cm2 around 140 eV. Cross-sections for dissociation of C2 H2+ (C2D2+) to ionic products are seen to decrease for two orders of magnitude, from C2D+ (12.6 ± 0.3) × 10-17 cm2 over CH+(9.55 ± 0.06) × 10-17 cm2, C+ (6.66 ± 0.05) × 10-17 cm2, C2+ (5.36 ± 0.27) × 10-17 cm2, H+ (4.73 ± 0.29) × 10-17 cm2 and CH2+ (4.56 ± 0.27) × 10-18 cm2 to H2+ (5.68 ± 0.49) × 10-19 cm2. Absolute cross-sections and threshold energies have been compared with the scarce data available in the literature.  相似文献   

6.
Absolute cross sections for electron impact dissociation of ND+ leading to the formation of D+ have been measured by applying the animated electron-ion beam method in the energy range from the reaction threshold up to 2.5 keV. The maximum inclusive cross section is observed to be (16.8 ± 0.8) × 10−17 cm2 at the electron energy of 65.1 eV. The appearance energy for the D+ production is measured to be (4.0 ± 0.5) eV. Collected data are analyzed in details by means of an original procedure in order to determine separately the contributions of dissociative channels. A specific Monte Carlo modeling has been developed, which is proven to reconstruct adequately the dissociative ionization cross section. The present energy thresholds provide information about the ground and excited states of the molecular ion, as well as about the possible population of the vibrational levels. The reaction D2(v) + N+ (or H2(v) + N+) is a probable source for that population and it constitutes the first step of the molecular activated processes, so the corresponding chain of reactions has to be considered to study the chemistry of plasma sources.  相似文献   

7.
Absolute cross sections for electron impact ionization and dissociation of OH+ and OD+ leading to the formation of the OH2+, O+, O2+, O3+ and D+ ions have been measured by applying the animated electron-ion beam method in the energy range from the respective reaction thresholds up to 2.5 keV. The maximum of the single ionization cross section is found to be (0.95? ± ?0.02) × 10?19 cm2 at 155 eV. The maximum total cross sections for O+ and D+ fragments production are observed to be (15.7? ± ?0.2) × 10?17 cm2 at 95 eV and (10.8? ± ?0.5) × 10?17 cm2 at 95 eV, respectively. The cross sections for O2+ and O3+ are much smaller, (5.37? ± ?0.04) × 10-18 cm2 at 135 eV and (7.95? ± ? 0.23) × 10-20 cm2 at 315 eV, respectively. The collected data are analyzed in details in order to determine separately the contributions of dissociative excitation and of dissociative ionization to the O+ and D+ fragments production.  相似文献   

8.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

9.
Anisotropy of the nonlinear absorption of Co2+ ions in MgAl2O4 single crystal at the wavelengths of 1.35 and 1.54 μm has been experimentally demonstrated. The experimental data are analyzed in the framework of a phenomenological model when the Co2+ ions are described as three sets of linear dipoles oriented along the crystallographic axes. Ground-state and excited state absorption cross-sections at 1.35 and 1.54 μm are evaluated to be σgsa=(4.0±0.3)×10-19, σesa=(3.6±0.4)×10-20 cm2 and σgsa=(5.1±0.3)×10-19, σesa=(4.6±0.4)×10-20 cm2, respectively. PACS 42.55.Rz; 71.20.Be  相似文献   

10.
The ground-state and excited-state absorption cross sections of a Cr5+:YVO4 single crystal were determined by the intensity-dependant transmission measurements to be(2.0±0.4)×10-18 cm2 and less than 0.1×10-18 cm2 at 1.08 μm, respectively. The bleaching relaxation time of the Cr5+:YVO4 crystal was estimated to be 3.5±1.5 ns. Passive Q-switching of a diode-pumped Yb3+:YVO4 laser with the Cr5+:YVO4 saturable absorber was realized. PACS 42.55.Xi; 42.60.Gd; 42.70.Hj  相似文献   

11.
Slow ion production cross sections for collisions of H+3 and D+3 ions with H2 and D2 have been measured at collision energies between 100 eV and 500 eV. The values vary from 2 × 10-17 cm2 to 6 × 10-17 cm2. The smaller cross sections for D3 projectiles may be explained as an internal energy effect.  相似文献   

12.
The crystal of Nd3+:Sr6YSc(BO3)6 with dimensions of O 19×42 mm3 was grown by the Czochralski method. It’s spectral and laser properties have been investigated. The absorption cross section is 1.47×10-20 cm2 with a FWHM 12.0 nm at 807 nm, the emission cross section is 1.57×10-19 cm2 at 1060 nm, and the fluorescence lifetime is 76 μs at room temperature. The maximum laser output is 25.7 mJ at 1.06 μm pumped by a single Xenon flash lamp and the overall and average slope efficiencies are 0.12% and 0.09%, respectively. The laser energy threshold value is 1.28 J. PACS 42.55.Rz; 42.70.Hj; 78.20.-e  相似文献   

13.
The results of Er3+ ion spectroscopic analysis in Sc:LiNbO3 crystals were reported. The line strengths from the ground state to the excited state were evaluated from the measured unpolarized absorption spectrum and analyzed by using standard Judd–Ofelt theory. For Sc(3 mol. %):Er (1 mol. %):LiNbO3 crystal, the obtained intensity parameters are: Ω2=3.72×10-20 cm2, Ω4=1.07×10-20 cm2, and Ω6=0.98×10-20 cm2. The fluorescence spectra and microsecond time-resolved spectra were investigated in the visible region. The excited state absorption transition strengths at 800 nm excitation were evaluated based on Judd–Ofelt theory. The results obtained here were compared to results from other research on Er:LiNbO3 crystals. PACS 71.20.Eh; 77.84.Dy; 42.70.Hj; 42.62.Fi; 42.65.Ky  相似文献   

14.
The surface layer of an equiatomic TiNi alloy, which exhibits the shape memory effect in the martensitic state, is modified with high-dose implantation of 65-keV N+ ions (the implantation dose is varied from 1017 to 1018 ions/cm2). TiNi samples are implanted by N+, Ni+-N+, and Mo+-W+ ions at a dose of 1017–1018 cm−2 and studied by Rutherford backscattering, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction (glancing geometry), and by measuring the nanohardness and the elastic modulus. A Ni+ concentration peak is detected between two maxima in the depth profile of the N+ ion concentration. X-ray diffraction (glancing geometry) of TiNi samples implanted by Ni+ and N+ ions shows the formation of the TiNi (B2), TiN, and Ni3N phases. In the initial state, the elastic modulus of the samples is E = 56 GPa at a hardness of H = 2.13 ± 0.30 GPa (at a depth of 150 nm). After double implantation by Ni+-N+ and W+-Mo+ ions, the hardness of the TiNi samples is ∼2.78 ± 0.95 GPa at a depth of 150 nm and 4.95 ± 2.25 GPa at a depth of 50 nm; the elastic modulus is 59 GPa. Annealing of the samples at 550°C leads to an increase in the hardness to 4.44 ± 1.45 GPa and a sharp increase in the elastic modulus to 236 ± 39 GPa. A correlation between the elemental composition, microstructure, shape memory effect, and mechanical properties of the near-surface layer in TiNi is found.  相似文献   

15.
The results of the spectroscopic analysis of transition strengths for Er3+ ions in a series of Hf:Er:LiNbO3 crystals with variable Hf content and fixed Er content are reported. Unpolarized UV-VIS-NIR absorption spectra, upconversion fluorescence spectra excited at 800 nm, and microsecond time-resolved spectra excited at 400 nm and 800 nm by 800 nm femtosecond laser were measured at room temperature. The HfO2 incorporation has influence on Er3+ radiative lifetimes, and fluorescence branching ratios. For Hf(4 mol %):Er(1 mol %):LiNbO3, Ω2=2.63×10-20 cm2, Ω4=2.86×10-20 cm2, and Ω6=0.72×10-20 cm2. Ω24 is contrary to the Er3+ general trend of Ω246 when the Hf content is below its threshold concentration. In addition, the sum of Ω increases with the Hf content when the HfO2 content below 6 mol % is unfamiliar. The upconversion mechanism is discussed in this work. PACS 71.20.Eh; 77.84.Dy; 42.62.Fi; 42.65.Ky  相似文献   

16.
H+ and He2+ impact single and double ionization cross sections of ground state lead atoms have been calculated in the binary encounter approximation. Calculations of direct double ionization cross sections have been performed in the modified double binary encounter model. The accurate expressions of σΔE (cross-section for energy transfer ΔE) and Hartree-Fock velocity distributions for the target electrons have been used throughout the calculations. Contributions to double ionization from Auger effect following ionization of inner shells have been considered in the present work. Our H+ impact single and double ionization cross sections are in good agreement with the experimental observations. In calculations of He2+ impact cross sections, the present theoretical approach shows limited success in the experimentally investigated region (50–350 keV amu-1).  相似文献   

17.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

18.
19.
This paper presents the crystal growth and optical characterization of thulium-doped KLu(WO4)2 (KLuW). Thulium-doped KLuW macrodefect-free monoclinic single crystals (a*×b×c≈10×7×15 mm3) were grown by the top seeded solution growth slow cooling method with dopant concentrations of 0.5%, 1%, 3% and 5% atomic in solution. The evolution of unit cell parameters in relation with thulium doping was studied by X-ray powder patterns. Thulium energy levels in the KLuW host were determined by 6 K polarized optical absorption. The Judd–Ofelt parameters determined were Ω2=9.01×10-20 cm2, Ω4=1.36×10-20 cm2 and Ω6=1.43×10-20 cm2. The maximum emission cross section for the 1.9 μm emission, calculated by Füchtbauer–Ladenburg method, is 1.75×10-20 cm2, at 1845 nm with E//Nm. The intensity decay time from the emitting levels 1 G 4 and 3 H 4 levels in relation to the concentration were studied. For the lowest thulium concentration, the measured decay times from 1 G 4 and 3 H 4 emitting levels are 140 μs and 230 μs, respectively. PACS 42.55.Rz; 78.20.-e; 78.55.-m  相似文献   

20.
Continuous and pulsed 12 keV electron beams were used to excite nitrogen within a gas cell at pressures ranging from 10 to 1400 hPa. The pressure dependence of the ratio of photon fluxes for emission from vibrational levels v'=0 and 1 of the C 3Π u state has been studied. The results confirm the presence of a collisional excitation mechanism populating v'=0, 1 in addition to electron impact excitation. Rate constants of (1.27 ±0.04)×10-11 cm3s-1 [ v'=0] and (2.68 ±0.08)×10-11 cm3s-1 [ v'=1] were measured for C 3Π u quenching by ground state nitrogen. For electron beam conditions relative excitation efficiencies of 1:0.59:0.22 for vibrational levels 0, 1 and 2 were calculated. The recorded flux ratios are compared with the predictions given by a vibrational relaxation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号