首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper, non-smooth dynamics of two elastic beams excited by harmonic force with impact interaction is studied through analyses, simulations, and experiments. A two degree-of-freedom vibro-impact model is improved by applying the Galerkin approach and Newton's impact law for the two cantilever beams with impact interaction. Numerical analysis is taken to investigate the vibro-impact motions of cantilever beams excited by harmonic force. The l-adding periodic motions and k=1/1, k=2/2, k=3/4, and k=4/4 type of stable periodic motions of the impacted cantilever beam are presented. Poincaré map is established and the Floquet multipliers of the periodic motions are obtained through semi-analytical method to determine the stability of the motions near the bifurcation point. Through associated experiments, typical bifurcations and chaos of the non-smooth system are examined, which are in good agreement with numerical results.  相似文献   

2.
We further study the action of SL(n+1, C) on the space of finite action solutions of the bidimensional Euclidean CP n models. We decompose the space of k-instantons into strata. Each stratum in characterized by an integer m with 0mmin(k, n) which can be calculated from the instanton by purely algebraic means. The k-instantons with m=n are called generic. Their stratum is shown to be dense in the space of k-instantons when kn. The isotropy subgroups for each stratum are identified.
Résumé Nous poursuivons l'étude de l'action de SL(n+1, C) sur l'espace des solutions à action finie du modèle CP n sur l'espace euclidien bi-dimensionnel. L'espace des k-instantons est décomposé en strates. Chaque strate est caractérisée par un entier m tel que 0 mmin(k, n) et qui peut être calculé à partir de l'instanton par des méthodes purement algébriques. Les k-instantons avec m=n sont dits génériques. Leur strate est dense dans l'espace des k-instantons (lorsque k n). Les sous-groupes d'isotropie de chacune des strates sont identifiés.


Supported in part by the Natural Sciences and Engineering Research Council of Canada and by the Fonds FCAR pour l'aide et le soutien à la recherche.  相似文献   

3.
Theq-deformations of the universal enveloping algebra ofsl(m, n) are considered, a Poincaré-Birkhoff-Witt type theorem is proved for these deformations, and the extra relations which are needed to definesl(m, n) as a contragredient algebra in addition to the Serre-type relations are identified with proof.  相似文献   

4.
We analyse the extensions of the Poincaré algebraP with arbitrary kernels. The main tool is a reduction theorem which generalizes the Hochschild-Serre theorem forn=2. This reduction theorem is proved and used to investigate the structure of the Lie algebras obtained by extension.We look particularly for the irreducible and -irreducible extensions ofP and we classify the types of irreducible extensions with arbitrary kernels.  相似文献   

5.
The afterglow of a discharge in helium with a small admixture of hydrogen is studied spectroscopically (p=40 Torr, [e]≤1011 cm?3). The time-resolved measurements of intensities of the first four lines of the Balmer series are performed. The concentrations of metastable helium atoms and molecules are evaluated from the relative intensity of the absorption lines. The ratios of excitation transfer rates from atoms He(2 3 S 1) k 1(n) and molecules of helium He2(a 2sσ 3Σ u + ) k 2(n) to atomic hydrogen H*(n) are measured to be k 1(n=3)/k 2(n=3)=0.04±0.02 and k 1(n=4)/k 2(n=4)=0.01±0.02. The ratios of excitation rate constants k 2(n) corresponding to different states H(n) are measured to be k 1(n=4)/k 2(n=3)=0.023±0.01; k 1(n=5)/k 2(n=3)≤0.013; and k 1(n=6)/k 2(n=3)≤0.007.  相似文献   

6.
A fully Poincaré covariant model is constructed as an extension of the κ-Minkowski spacetime. Covariance is implemented by a unitary representation of the Poincaré group, and thus complies with the original Wigner approach to quantum symmetries. This provides yet another example (besides the DFR model), where Poincaré covariance is realised à la Wigner in the presence of two characteristic dimensionful parameters: the light speed and the Planck length. In other words, a Doubly Special Relativity (DSR) framework may well be realised without deforming the meaning of “Poincaré covariance”.  相似文献   

7.
Employing Poincaré degrees of freedomM jk=(¯K,¯J) andP k=(E,¯p) transforming linearly (but inhomogeneously) under the action of the Poincaré group we define a number of quantities which we later identify with physical observables. The identifications are consistent with the nonrelativistic limit and with other requirements following from the Poincaré covariance. Next, we treat a free relativistic particle as composed of two interacting parts. Relativistic quantum commutation relations for their Poincaré algebras and a kind of (inverse) relativistic correspondence principle are used to generate (quasi-) classical equations of their relative motion. A simple example based on these ideas is explicitly solved.I am indebted to Prof. B. Laurent, Dr. S. Flodmark, and Prof. I. Fischer-Hjalmars for pointing this out to me.  相似文献   

8.
Revising Nekhoroshev’s geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be \({1/(2n\alpha_1\cdots\alpha_{n-2}}\)) (\({\alpha_i}\)’s being Nekhoroshev’s steepness indices and \({n \ge 3}\) the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.  相似文献   

9.
In the recent publication (E. Kanzieper and G. Akemann in Phys. Rev. Lett. 95:230201, 2005), an exact solution was reported for the probability p n,k to find exactly k real eigenvalues in the spectrum of an n×n real asymmetric matrix drawn at random from Ginibre’s Orthogonal Ensemble (GinOE). In the present paper, we offer a detailed derivation of the above result by concentrating on the proof of the Pfaffian integration theorem, the key ingredient of our analysis of the statistics of real eigenvalues in the GinOE. We also initiate a study of the correlations of complex eigenvalues and derive a formula for the joint probability density function of all complex eigenvalues of a GinOE matrix restricted to have exactly k real eigenvalues. In the particular case of k=0, all correlation functions of complex eigenvalues are determined.  相似文献   

10.
The asymmetric directed-bond percolation (ADBP) problem with an asymmetry parameterk is introduced and some rigorous results are given concerning a series expansion of the percolation probability on the square lattice. It is shown that the first correction term,d n,1 (k) is expressed by Gauss' hypergeometric series with a variablek. Since the ADBP includes the ordinary directed bond percolation as a special case withk=1, our results give another proof for the Baxter-Guttmann's conjecture thatd n,1(1) is given by the Catalan number, which was recently proved by Bousquet-Mélou. Direct calculations on finite lattices are performed and combining them with the present results determines the first 14 terms of the series expansion for percolation probability of the ADBP on the square lattice. The analysis byDlog Padé approximations suggests that the critical value depends onk, while asymmetry does not change the critical exponent of percolation probability.  相似文献   

11.
The contraction of the Poincaré group with respect to the space translations subgroup gives rise to a group that bears a certain duality relation to the Galilei group, that is, the contraction limit of the Poincaré group with respect to the time translations subgroup. In view of this duality, we call the former the dual Galilei group. A rather remarkable feature of the dual Galilei group is that the time translations constitute a central subgroup. Therewith, in unitary irreducible representations (UIRs) of the group, the Hamiltonian appears as a Casimir operator proportional to the identity H = EI, with E (and a spin value s) uniquely characterizing the representation. Hence, a physical system characterized by a UIR of the dual Galilei group displays no non-trivial time evolution. Moreover, the combined U(1) gauge group and the dual Galilei group underlie a non-relativistic limit of Maxwell’s equations known as the electric limit. The analysis presented here shows that only electrostatics is possible for the electric limit, wholly in harmony with the trivial nature of time evolution governed by the dual Galilei group.  相似文献   

12.
Kok-Kwei Pan 《Physica A》2012,391(5):1984-1990
The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law nλ with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.  相似文献   

13.
Recently, Wang et al. introduced a novel (2, n) scalable secret image sharing (SSIS) scheme, which can gradually reconstruct a secret image in a scalable manner in which the amount of secret information is proportional to the number of participants. However, Wang et al.’s scheme is only a simple 2-out-of-n case. In this paper, we consider (k, n)-SSIS schemes where a qualified set of participants consists of any k participants. We provide two approaches for a general construction for any k, 2 ? k ? n. For the special case k = 2, Approach 1 has the lesser shadow size than Wang et al.’s (2, n)-SSIS scheme, and Approach 2 is reduced to Wang et al.’s (2, n)-SSIS scheme. Although the authors claim that Wang et al.’s (2, n)-SSIS scheme can be easily extended to a general (k, n)-SISS scheme, actually the extension is not that easy as they claimed. For the completeness of describing the constructions and properties of a general (k, n)-SSIS scheme, both approaches are introduced in this paper.  相似文献   

14.
CoFeRhO4 has been studied by Mössbauer spectroscopy and X-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constant a0=8.451±0.005 Å. The iron ions are in ferric states. The temperature dependence of the magnetic hyperfine field is analyzed by the Néel theory of ferrimagnetism. The intersublattice superexchange interaction is antiferromagnetic and strong with a strength of JAB=−12.39kB while the intrasublattice superexchange interactions are weak with strengths of JAA=−4.96kB and JBB=6.20kB. As the temperature increases toward the Néel temperature TN, a systematic line broadening effect in the Mössbauer spectrum is observed and interpreted to originate from different temperature dependences of the magnetic hyperfine fields at various iron sites.  相似文献   

15.
Nickel film, with total thickness tNi in the range 1000-2000 Å, is known to exhibit perpendicular magnetic anisotropy (PMA), if the film has been deposited at room temperature. This phenomenon is due to the magneto-elastic (ME) effect. The same is also true for the (Ni/Pd)n multilayers, where n is the period (n≥3). In this paper, we have made two kinds of multilayers: one, which does not have a Pd cap layer, belongs to the A-group, and the other, which has, belongs to the B-group. The polar Kerr rotation θk, the polar Kerr ellipticity εk, and the figure of merit (θk)2R, where R is the reflectance, were measured for the two wavelengths, i.e. λ=633 and 442 nm, respectively. The effective PMA energy K was measured from the vibrating sample magnetometer. It was found that the most favorable multilayer for the magneto-optical (MO) application exists among the A-group samples: i.e. the tNi=1300 Å, tPd=50 Å (seed layer), and n=1 sample. We obtained θk=−9.76 min, εk=−9.13 min, (θk)2R=1.51 (rad)2 at λ=442 nm, and K=3.21×106 erg/cc for this optimal multilayer. Finally, the effects of the Pd seed layer on PMA and MO are also studied.  相似文献   

16.
We prove (in superspace) the equivalence between the higher-derivative N=1N=1 supergravity, defined by a holomorphic function F of the chiral scalar curvature superfield, and the standard theory of a chiral scalar superfield with a chiral superpotential W, coupled to the (minimal) Poincaré supergravity in four spacetime dimensions. The relation between the holomorphic functions F and W is found. It can be used as the technical framework for the possible scenario unifying the early Universe inflation and the present Universe acceleration. We speculate on the possible origin of our model as the effective supergravity generated by quantum superstrings, with a dilaton–axion field as the leading field component of the chiral superfield.  相似文献   

17.
We first compare the mathematical structure of quantum and classical mechanics when both are formulated in a C*-algebraic framework. By using finite von Neumann algebras, a quantum mechanical analogue of Liouville's theorem is then proposed. We proceed to study Poincaré recurrence in C*-algebras by mimicking the measure theoretic setting. The results are interpreted as recurrence in quantum mechanics, similar to Poincaré recurrence in classical mechanics.  相似文献   

18.
The Poincaré algorithm for reducing a system of ODEs to normal form (near an equilibrium point) is based on considering near-identity changes of coordinates generated by homogeneous polynomial functions h k. These are chosen in such a way as to eliminate the nonresonant terms of a corresponding order. We show that careful consideration of the higher-order terms generated in the transformation, and use of the arbitrarity in the choice of h k, permit us to obtain a significant simplification of the normal form. Our results are illustrated by a relevant example.  相似文献   

19.

Purpose

The purpose of our study was to compare diffusion-weighted MR imaging (DWI) with conventional dynamic MRI in terms of the assessment of small intrahepatic metastases from hepatocellular carcinoma (HCC).

Materials and Methods

In 24 patients with multifocal, small (≤2 cm) intrahepatic metastatic foci of advanced HCC, a total of 134 lesions (≤1 cm, n=81; >1 cm, n=53) were subjected to a comparative analysis of hepatic MRI including static and gadopentetate dimeglumine-enhanced dynamic imaging, and DWI using a single-shot spin-echo echo-planar MRI (b values=50, 400 and 800 s/mm2), by two independent reviewers.

Results

A larger number of the lesions were detected and diagnosed as intrahepatic metastases on DWI [Reviewer 1, 121 (90%); Reviewer 2, 117 (87%)] than on dynamic imaging [Reviewer 1, 107 (80%); Reviewer 2, 105 (78%)] (P<.05). For the 81 smaller lesions (≤1 cm), DWI was able to detect more lesions than dynamic imaging [Reviewer 1, 68 (84%) vs. 56 (69%), P=.008; Reviewer 2, 65 (80%) vs. 55 (68%), P=.031], but there was no statistically significant difference between the two image sets for larger (>1 cm) lesions.

Conclusion

Due to its higher detection rate of subcentimeter lesions, DWI could be considered complementary to dynamic MRI in the diagnosis of intrahepatic metastases of HCCs.  相似文献   

20.
We consider in n+1,n2, the non-linear Klein-Gordon equation. We prove for such an equation that there is a neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincaré covariant then the non-linear representation of the Poincaré Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincaré group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincaré group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号