首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Measurements of ion distributions at a charged solid–liquid interface using X‐ray standing waves (XSW) are presented. High energy synchrotron radiation (17.48 keV) is used to produce an XSW pattern inside a thin water film on a silicon wafer. The liquid phase is an aqueous solution containing Br and Rb ions. The surface charge is adjusted by titration. Measurements are performed over a pH range from 2.2–9, using the native Si oxide layer and functional (amine) groups as surface charge. The Debye length, indicating the extension of the diffuse layer, could be measured with values varying between 1–4 nm. For functionalized wafers, the pH dependent change from attraction to repulsion of an ion species could be detected, indicating the isoelectric point. In combination with the measurement of the streaming current, the surface charge of the sample could be quantified.  相似文献   

2.
Thin 200‐nm epoxy–amine mixtures were cured on silicon wafers with different surface chemistry to quantify the effect of the chemistry on the glass transition temperature evolution in ultra‐thin thermosetting films. Two surface treatments were investigated: the first one only consisted in the activation of the silanols groups at the silicon surface, whereas the second one consisted in the grafting 3‐aminopropyltrimethoxysilane (APTMS) monolayer on the silicon wafers. The epoxy films were deposited on these chemistry modified wafers by spin coating a toluene solution of DGEBA–amine mixture at stoichiometric ratio. The same cure processing was used for both samples. Thin films were analysed not only using microthermal and thermomechanical analysis to determine the relaxation transitions temperatures of these films but also using FTIR in infrared reflection absorption spectroscopy mode to determine the curing rate of these networks. It was found that all these thin films showed two different glass transitions, the first one at 96 °C and was independent of the surface treatments, whereas the second one increasing from 142 °C for the oxidised wafers surface to 167 °C for the aminosilane grafted on the silicon wafer. The substrate chemistry extent on the film network structure, the interfacial bonds and interactions are discussed. This work also illustrates the interest in using microthermal analysis to obtain relevant temperature glass transition of thin film at sub‐micrometre scale, strongly dependant of local structure and chemistry composition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of roughness on the dewetting behavior of polyethylene thin films on silicon dioxide substrates is presented. Smooth and rough silicon dioxide substrates of 0.3 and 3.2-3.9 nm root-mean-square roughness were prepared by thermal oxidation of silicon wafers and plasma-enhanced chemical vapor deposition on silicon wafers, respectively. Polymer thin films of approximately 80 nm thickness were deposited by spin-coating on these substrates. Subsequent dewetting and crystallization of the polyethylene were observed by hot-stage optical microscopy in reflection mode. During heating, the polymer films melt and dewet on both substrates. Further observations after cooling indicate that, whereas complete dewetting occurs on the smooth substrate surface, partial dewetting occurs for the polymer film on the rough surface. The average thickness of the residual film on the rough surface was determined by ellipsometry to be a few nanometers, and the spatial distribution of the polymer in the cavities of the rough surface could be obtained by X-ray reflectometry. The residual film originates from the impregnation of the porous surface by the polymer fluid, leading to the observed partial dewetting behavior. This new type of partial dewetting should have important practical consequences, as most real surfaces exhibit significant roughness.  相似文献   

4.
The stability and rupture of thin wetting films from aqueous NaCl or Na2SO4 solutions of different concentrations on silicon carbide were investigated. The flat surface of SiC was obtained by plasma-enhanced chemical vapor deposition (PE-CVD) on top of a silicon wafer. The microinterferometric method was used for measuring the film thickness with time. The light reflectance was calculated as a function of film thickness for the four-layer system: air/aqueous solution/SiC/Si wafer. The microinterferometric experiments showed that films from aqueous NaCl and Na2SO4 solutions with concentrations up to 0.01 M were stable independent of the pre-treatment of the substrate. The pre-treatment of the SiC surface was crucial for the wetting film stability at electrolyte concentrations greater than 0.01 M. The films were unstable and ruptured if SiC was washed with 5% hydrofluoric acid and concentrated sulfuric acid, while they were stable if washing was in sulfuric acid only, without immersing SiC in HF. The average equilibrium film thickness was determined as a function of electrolyte concentration. Measurements of the electrokinetic potential zeta were performed by electrophores of SiC powder in 0.001 M NaCl. It was shown that silicon carbide surface was negatively charged. The theory of heterocoagulation was used for the interpretation of the results. Besides the DLVO forces, the structural disjoining pressure (both positive and negative) has been included in the analysis.  相似文献   

5.
SiN(x)-coatings have been deposited by reactive magnetron sputtering. Gas pressure and film thickness have been varied. Scanning electron microsopic views of the cross sections show a columnar structure as well as polycrystalline films varying with deposition parameters. For quantitative comparisons of the film morphology an average column diameter has been used as a characteristic value obtained from TEM images. Similar results have been obtained by scanning tunneling microscope avoiding a large expenditure of preparation. Scanning tunneling microscopy is suitable for investigations of the fractal nature of top surface of thin films and to determine the height function of thin SiN(x)-coatings on silicon wafers directly. Computer simulations of sputter processes allow to discuss the evolution of microstructures qualitatively.  相似文献   

6.
We have used Fourier transform infrared spectroscopy to study thin water films on a hydrophilic silicon surface in the temperature range from 20 to -20 degrees C. Throughout that range, the spectra of the water adjacent to the silicon surface are consistent with that of bulk water near 25 degrees C. Thicker films (>1 microm) freeze at -11+/-1 degrees C. We reconcile the apparent paradox of a thin film of water which is quite liquidlike at a temperature where freezing of thicker films occurs by hypothesizing that the nucleation event in the thicker film is triggered by a critical ice embryo which forms at some small distance from the silicon surface, as opposed to in direct contact with it.  相似文献   

7.
SiNx-coatings have been deposited by reactive magnetron sputtering. Gas pressure and film thickness have been varied. Scanning electron microsopic views of the cross sections show a columnar structure as well as polycrystalline films varying with deposition parameters. For quantitative comparisons of the film morphology an average column diameter has been used as a characteristic value obtained from TEM images. Similar results have been obtained by scanning tunneling microscope avoiding a large expenditure of preparation. Scanning tunneling microscopy is suitable for investigations of the fractal nature of top surface of thin films and to determine the height function of thin SiNx-coatings on silicon wafers directly. Computer simulations of sputter processes allow to discuss the evolution of microstructures qualitatively.  相似文献   

8.
The microscopic thin wetting film method was used to study the stability of wetting films from aqueous solution of surfactants and phospholipid dispersions on a solid surface. In the case of tetradecyltrimethylammonium bromide (C(14)TAB) films the experimental data for the receding contact angle, film lifetime, surface potential at the vapor/solution and solution/silica interface were used to analyze the stability of the studied films. It is shown that with increasing C(14)TAB concentration charge reversal occurs at both (vapor/solution and solution/silica) interfaces, which affects the thin-film stability. The spontaneous rupture of the thin aqueous film was interpreted in terms of the earlier proposed heterocoagulation mechanism. The presence of the mixed cationic/anionic surfactants was found to lower contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants hetero-coagulation could arise through the formation of ionic surfactant complexes. The influence of the melting phase-transition temperature T(c) of the dimyristoylphosphatiddylcholine (DMPC) on the stability of thin films from dispersions of DMPC small unilamellar vesicles on a silica surface was studied by measuring the film lifetime and the TPC expansion rate. The stability of thin wetting films formed from dispersions of DMPC small unilamellar vesicles was investigated by the microinterferometric method. The formation of wetting films from diluted dispersions of DMPC multilamellar vesicles was studied in the temperature range 25-32 degrees C. The stability of thin film of lipid vesicles was explained on the basis of hydrophobic interactions. The results obtained show that the stability of wetting films from aqueous solutions of single cationic and mixed cationic-anionic surfactants has electrostatic origin, whereas the stability of the phospholipid film is due to hydrophobic interaction.  相似文献   

9.
The density profiles of polymethylmethacrylate (PMMA) thin films on silicon (111) single crystal wafers were investigated via neutron reflectivity measurements. Films were prepared by spin casting PMMA onto silicon wafers from o-xylene solution followed by annealing under vacuum at 90°C for 5 h. A ~45 Å thick layer at the free polymer surface was observed in the as-prepared samples that has a density about half the value of bulk PMMA. After heating above 110°C, this diffuse layer disappeared and the thin film density profile was transformed to one with a sharp free polymer surface. This transition was found to be irreversible. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
A systematic study of the surface forces between a cellulose sphere and cellulose thin films of varying crystallinity has been conducted as a function of ionic strength and pH. Semicrystalline cellulose II surfaces and amorphous cellulose films were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water. Crystalline cellulose I surfaces were prepared by spin-coating wafers with aqueous suspensions of sulfate-stabilized cellulose I nanocrystals. These preparation methods produced thin, smooth films suitable for surface forces measurements. The interaction with the cellulose I was monotonically repulsive at pH 3.5, 5.8, and 8.5 and at 0.1, 1, and 10 mM ionic strengths. This was attributed to the presence of strongly ionizable sulfur-containing groups on the cellulose nanocrystal surfaces. The amorphous film typically showed a steric interaction up to 100 nm away from the interface that was independent of the solution conditions. A range of surface forces were successfully measured on the semicrystalline cellulose II films; attractive and repulsive regimes were observed, depending on pH and ionic strength, and were interpreted in terms of van der Waals and electrostatic interactions. Clearly, the forces acting near cellulose surfaces are very dependent on the way the cellulose surface has been prepared.  相似文献   

11.
Moisture absorption in model photoresist films of poly(4-hydroxystryene) (PHOSt) and poly(tert-butoxycarboxystyrene) (PBOCSt) supported on silicon wafers was measured by X-ray and neutron reflectivity. The overall thickness change in the films upon moisture exposure was found to be dependent upon the initial film thickness. As the film becomes thinner, the swelling is enhanced. The enhanced swelling in the thin films is due to the attractive nature of the hydrophilic substrate, leading to an accumulation of water at the silicon/polymer interface and subsequently a gradient in concentration from the enhancement at the interface to the bulk concentration. As films become thinner, this interfacial excess dominates the swelling response of the film. This accumulation was confirmed experimentally using neutron reflectivity. The water rich layer extends 25 +/- 10 A into the film with a maximum water concentration of approximately 30 vol %. The excess layer was found to be polymer independent despite the order of magnitude difference in the water solubility in the bulk of the film. To test if the source of the thickness dependent behavior was the enhanced swelling at the interface, a simple, zero adjustable parameter model consisting of a fixed water rich layer at the interface and bulk swelling through the remainder of the film was developed and found to reasonably correspond to the measured thickness dependent swelling.  相似文献   

12.
The interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl ether C12E6 were investigated using two techniques and three different types of surfaces. As nonpolar surfaces, the air/water interface, silanated negatively charged glass, and thiolated uncharged gold surfaces were chosen. The interactions between the air/water interfaces were measured with a thin film pressure balance in terms of disjoining pressure as a function of film thickness. The interactions between the solid/liquid interfaces were determined using a bimorph surface force apparatus. The influence of the nature of the surface on the interaction forces was investigated at surfactant concentrations below and above the cmc. The adsorption of the nonionic surfactant on the uncharged thiolated surface does not, as expected, lead to any buildup of a surface charge. On the other hand, adsorption of C12E6 on the charged silanated glass and the charged air/water interface results in a lowering of the surface charge density. The reduction of the surface charge density on the silanated glass surfaces is rationalized by changes in the dielectric permittivity around the charged silanol groups. The reason for the surface charge observed at the air/water interface as well as its decrease with increasing surfactant concentration is discussed and a new mechanism for generation of OH- ions at this particular interface is proposed.  相似文献   

13.
To improve the electrochemical performances of Si thin film anodes for lithium rechargeable batteries, fullerene thin films are prepared by plasma-assisted evaporation methods to be used as coating materials. Analyses via Raman and X-ray photoelectron spectroscopy indicate that amorphous polymeric films originated from fullerene are formed on the surface of the silicon thin film. The electrochemical performance of these fullerene-coated silicon thin film as an anode material for rechargeable lithium batteries has been investigated by cyclic voltammetry, charge/discharge tests, and electrochemical impedance spectroscopy. The fullerene-coated Si thin films demonstrated a high specific capacity of above 3,000 mAh g−1 as well as good capacity retention for 40 cycles. In comparison with bare silicon anodes, the fullerene-coated silicon thin film showed superior and stable cycle performance which can be attributed to the fullerene coating layer which enhances the Li-ion kinetic property at the electrode/electrolyte interface.  相似文献   

14.
We examine the contact angle of water droplets on polystyrene (PS) thin films of varying thicknesses supported by silicon wafers under both air and pressurized carbon dioxide (CO2) environments. At 23 degrees C, the contact angle is found to increase upon increasing CO2 pressure in the vapor regime and then levels off in the liquid CO2 regime. A macroscopic model based on Young's equation and the geometric-mean method for interfacial tensions, and long-range van der Waals interactions, correctly predicts the trends and the magnitude of the contact angle dependence on pressure, although deviations occur at high CO2 activities. The contact angle was also found to depend on film thickness, h, when h was comparable to or smaller than 50 nm. Specifically, the contact angle decreases with decreasing PS film thickness. This behavior could be accounted for with the use of a model that incorporates the effects of film thickness, CO2 pressure, and the long-range van der Waals potential.  相似文献   

15.
Moisture absorption in poly(4-tert-butoxycarbonyloxystyrene) (PBOCSt) films supported on Al(2)O(3) sputter coated silicon wafers is measured using neutron and X-ray reflectivity. Accumulation of water at the interface during moisture exposure results in an apparent film-thickness-dependent swelling for ultrathin PBOCSt films. The swelling of a film on Al(2)O(3) is less than the swelling of a film of the same thickness on SiO(x) for films thinner than 20 nm. This is due to comparatively less moisture accumulation at the Al(2)O(3)/PBOCSt interface. A simple, zero adjustable parameter model consisting of a fixed water-rich layer at the interface and bulk swelling through the remainder of the film describes the thickness-dependent swelling quantitatively. The influence of four different Al(2)O(3) surface treatments on the moisture distribution within PBOCSt films was examined: bare Al(2)O(3), tert-butylphosphonic acid, phenylphosphonic acid, and n-octyltrichlorosilane. Both the phenyl and the octyl surface treatments reduce the accumulation of water at the polymer/substrate interface. The tert-butyl treatment does not reduce the interfacial water concentration, presumably due to insufficient surface coverage.  相似文献   

16.
An optimization study of the preparation of spin-coated cellulose model films from the NMMO/DMSO system on silicon wafers has been made. The study shows that the cellulose concentration ID the solution determines the cellulose film thickness and that the temperature of the solution affects the surface roughness. A lower solution temperature results ID a lower surface roughness at cellulose concentrations below 0.8%. Using the described method, ID ID possible to prepare films with thicknesses of 30–90 nm with a constant surface roughness by changing the cellulose concentration, i.e. by dilution with DMSO. On these films, water has a contact angle less than 20° and about 50% of the material can, according to CP/MAS 13C-NMR spectroscopy on corresponding fibrous material, be considered to consist of crystalline cellulose ID type material. ID has further been shown that AFM can be used to determine the thickness of cellulose films, ID both dry and wet states. ID this method, the difference ID height between the top surface and the underlying wafer has been measured at an incision made into the cellulose film. The cellulose films have also been spin-coated with the same technique as on the silicon oxide wafer onto the crystal ID a quartz crystal microbalance (QCM). These model films were found to be suitable for swelling measurements with the QCM. The films were very stable during this type of measurement and films with different amounts of charges gave different swelling responses depending on their charges. As expected, films with a higher charge showed a higher swelling.  相似文献   

17.
In the current report, casting from good solvent (acetone) and casting from mixed solvent and nonsolvent were employed for preparing thin films of terpolymer of T etrafluoroethylene (TFE), H exafluoropropylene (HFP), and V inylidene fluoride (VDF) (THV), on silicon wafers. These films revealed various morphologies and wetting behaviors depending on the solution concentration, temperature, and thin film preparation method. The THV thin films prepared by casting from good solvent showed smooth morphology with holes. The thin film prepared from a 3 wt % THV/acetone solution by casting from good solvent at 15 °C demonstrated spheres in addition to the smooth morphology, while the thin film prepared from a 5 wt % THV/acetone solution at 15 °C by casting from good solvent had a mesh‐like structure with some linked spheres. Casting the thin films from mixed solvent and nonsolvent resulted in various morphologies such as different sphere sizes embedded in a dense film layer, and hexagonal close packed structures. The thin films prepared by casting from good solvent showed a slightly hydrophobic character, with a measured water contact angle of approximately 99°, while the nonsolvent cast films had a water contact angle as high as 145°. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 643–657  相似文献   

18.
Four different kinds of diamond-like carbon (DLC) coating morphologies on the surface of silicon films were prepared directly on a copper foil by using radio frequency plasma-enhanced chemical vapor deposition at 200 °C. A thin double layer film consisting of DLC (60 nm) and silicon film (250 nm) was fabricated for use as the anode material of lithium secondary batteries, and its electrochemical performance was also examined with special attention being paid to the surface coverage of the DLC film. The full coverage of silicon by the DLC film resulted in poor capacity due to the ensuing low reactivity with the lithium ions. On the other hand, the partial coating of the DLC film on the silicon film not only reduced the capacity fading, but also increased the discharge capacity during the charge/discharge cycles. These results indicated that the good dispersion of the DLC coating, obtained by using a smaller coating sector on the silicon film, improved the integrity of the electrode structure, thus giving higher capacities and reduced capacity fading.  相似文献   

19.
The interaction between cellulose surfaces in aqueous solution has been measured using colloidal probe microscopy. Cellulose thin films with varying charge through carboxyl group substitution were used in this study with the surface forces fit to DLVO theory. It was found that the surface potential increased, as expected, with increasing carboxyl substitution. Furthermore, for a given degree of substitution, the surface potential increased as a function of increasing pH. At low pH, the surface forces interaction were attractive and could be fit to the non-retarded Hamaker equation using a constant of 3 x 10(-21) J. At pH greater than 5, the force interactions were monotonically repulsive, regardless of the ionic strength of the solution for all charge densities of the cellulose thin films. The adsorption of polyDADMAC to these charged cellulose films was also investigated using the quartz crystal microbalance. It was found that for the low charge film, a low surface excess of PDADMAC was sensed and that the adsorbed conformation was essentially flat. However for the higher charged cellulose film, a spontaneous de-swelling was observed resulting in no possibility of quantitatively determining the sensed mass using QCM.  相似文献   

20.
Radio-frequency glow-discharge plasma polymer thin films of allylamine (AA) and hexamethyldisiloxane (HMDSO) were prepared on silicon wafers and analyzed by a combination of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray reflectometry (XRR), and neutron reflectometry (NR). AFM and XRR measurements revealed uniform, smooth, defect-free films of 20-30 nm thickness. XPS measurements gave compositional data on all elements in the films with the exception of hydrogen. In combination with XRR and NR, the film composition and mass densities (1.46 and 1.09 g cm(-)(3) for AA and HMDSO, respectively) were estimated. Further NR measurements were conducted with the AA and HMDSO films in contact with water at neutral pH. Three different H(2)O/D(2)O mixtures were used to vary the contrast between the aqueous phase and the polymer. The amount of water penetrating the film, as well as the number of labile protons present, was determined. The AA film in contact with water was found to swell by approximately 5%, contain approximately 3% water, and have approximately 24% labile protons. The HDMSO polymer was found to have approximately 6% labile protons, no thickness increase when in contact with water, and essentially no solvent penetration into the film. The difference in the degree of proton exchange within the films was attributed to the substantially different surface and bulk chemistries of the two films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号