首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The precision (reproducibility) of relaxation times derived from magnetic resonance images of patients with multiple sclerosis (MS) were investigated. Measurements of 10 MS patients were performed at 1.5 T on two occasions within 1 wk. T1 and T2 was measured using a partial saturation inversion recovery sequence (6 points) and a Carr-Purcell-Meiboom-Gill phase alternating-phase shift multiple spin-echo sequence with 32 echoes. Regions of interest (ROI) were placed both in apparently normal white matter and plaques. The precision (+/- 1.96 SD) and the confidence intervals for T1 and T2 for white matter and plaques were calculated. The precision of T1 for white matter and plaques was respectively +/- 94 msec and +/- 208 msec. The precision of T2 for white matter and plaques was respectively +/- 18 msec and +/- 26 msec. For all measurements the coefficient of variation was about 9%. Judging from our own study and others as well, a precision better than 10% for T1 and T2 would seem unrealistic at present.  相似文献   

2.
Biexponential T(2) relaxation of the localized water signal can be used for segmentation of spectroscopic volumes. To assess the specificity of the components an iterative relaxation measurement of the localized water signal (STEAM, 12 echo times, geometric spacing from 30 ms to 2000 ms) was combined with magnetization transfer (MT) saturation (40 single lobe pulses, 12 ms duration, 1440 degrees nominal flip angle, 1 kHz offset, repeated every 30 ms). Voxels including CSF were examined in parietal cortex and periventricular parietal white matter (10 each), as well as 13 voxels in central white matter and 16 T(1)-hypointense non-enhancing multiple sclerosis lesions without CSF inclusion. Biexponential models (excluding myelin water) were fitted to the relaxation data. In periventricular VOIs the component of long T(2) (1736 +/- 168 ms) that is attributed to CSF was not affected by MT. In cortical VOIs this component had markedly shorter T(2)'s (961 +/- 239 ms) and showed both attenuation and prolongation with MT, indicating contributions from tissue. MS lesions and central WM showed a second tissue component of intermediate T(2) (160-410 ms). In white matter similar MT attenuation indicated strong exchange between the two tissue components, prohibiting segmentation. In MS lesions, however, markedly less MT of the intermediate component was found, which is consistent with decreased cellularity and exchange in a region that is large compared to diffusion motion.  相似文献   

3.
In vivo relaxation times and relative spin densities of gray matter (GM) and white matter (WM) of rat spinal cord were measured. Inductively coupled implanted RF coil was used to improve the signal-to-noise ratio required for making these measurements. The estimated relaxation times (in milliseconds) are: T1(GM) = 1021+/-93, T2(GM) = 64+/-3.4, T1(WM) = 1089+/-126, and T2(WM) = 79+/-6.9. The estimated relative spin densities are: rho(GM) = (60+/-2.3)% and rho(WM) = (40+/-2.1)%. The T1 values of GM and white matter are not statistically different. However, the differences in T2 values and spin densities of GM and WM are statistically significant. These in vivo measurements indicate that the observed contrast between GM and WM in spinal cord MR images mainly arises from the differences in the spin density.  相似文献   

4.
Fast and precise T1 imaging using a TOMROP sequence   总被引:3,自引:1,他引:2  
Proton spin-lattice (T1) relaxation time images were computed from a data set of 32 gradient-echo images acquired with a fast TOMROP (T One by Multiple Read Out Pulses) sequence using a standard whole-body MR imager operating at 64 MHz. The data acquisition and analysis method which permits accurate pixel-by-pixel estimation of T1 relaxation times is described. As an example, the T1 parameter image of a human brain is shown demonstrating an excellent image quality. For white and gray brain matter, the measured longitudinal relaxation processes are adequately described by a single-component least-squares fit, while more than one proton component has to be considered for fatty tissue. A quantitative analysis yielded T1 values of 547 +/- 36 msec and 944 +/- 73 msec for white and gray matter, respectively.  相似文献   

5.
Three-dimensional (3D) magnetic resonance imaging (MRI) has shown great potential for studying the impact of prematurity and pathology on brain development. We have investigated the potential of optimized T1-weighted 3D magnetization-prepared rapid gradient-echo imaging (MP-RAGE) for obtaining contrast between white matter (WM) and gray matter (GM) in neonates at 3 T. Using numerical simulations, we predicted that the inversion time (TI) for obtaining strongest contrast at 3 T is approximately 2 s for neonates, whereas for adults, this value is approximately 1.3 s. The optimal neonatal TI value was found to be insensitive to reasonable variations of the assumed T1 relaxation times. The maximum theoretical contrast for neonates was found to be approximately one third of that for adults. Using the optimized TI values, MP-RAGE images were obtained from seven neonates and seven adults at 3 T, and the contrast-to-noise ratio (CNR) was measured for WM versus five GM regions. Compared to adults, neonates exhibited lower CNR between cortical GM and WM and showed a different pattern of regional variation in CNR. These results emphasize the importance of sequence optimization specifically for neonates and demonstrate the challenge in obtaining strong contrast in neonatal brain with T1-weighted 3D imaging.  相似文献   

6.
Serial MR scans were performed with the 2DFT imaging method and the filtered backprojection imaging method on 12 patients with multiple sclerosis in acute phase, 4 in a relapsing/remitting form, and 8 in a progressive form, before, during and after ACTH treatment. Both T1 and T2mono relaxation times, obtained by fitting transverse magnetization decay curves with a monoexponential function within the apparently normal white matter and the areas of increased signal, were measured. With the backprojection method it was possible to fit the transverse magnetization decay curve with a biexponential function and obtain T2long and T2short relaxation times. The T2mono and T1 relaxation times of the apparently normal white matter were significantly different from those obtained for volunteers, but no significant differences were found before, during, or after treatment. The transverse magnetization decay curves of the areas of increased signal were better fitted by a biexponential function. No significant changes in these relaxation times were observed after ACTH treatment. These results argue against an anti-oedematous action of ACTH and may suggest that it has an immunosuppressant effect.  相似文献   

7.
The magnetic resonance (MR) properties of the rat spinal cord were characterized at the T9 level with ex vivo experiments performed at 9.4 T. The inherent endogenous contrast parameters, proton density (PD), longitudinal and transverse relaxation times T1 and T2, and magnetization transfer ratio (MTR) were measured separately for the grey matter (GM) and white matter (WM). Analysis of the measurements indicated that these tissues have statistically different proton densities with means PD(GM)=54.8+/-2.5% versus PD(WM)=45.2+/-2.4%, and different T1 values with means T1GM=2.28+/-0.23 s versus T1WM=1.97+/-0.21 s. The corresponding values for T2 were T2GM=31.8+/-4.9 ms versus T2WM=29.5+/-4.9 ms, and the difference was insignificant. The difference between MTR(GM)=31.2+/-6.1% and MTR(WM)=33.1+/-5.9% was also insignificant. These results collectively suggest that PD and T1 are the two most important parameters that determine the observed contrast on spinal cord images acquired at 9.4 T. Therefore, in MR imaging studies of spinal cord at this field strength, these parameters need to be considered not only in optimizing the protocols but also in signal enhancement strategies involving exogenous contrast agents.  相似文献   

8.
Detection of glutathione (GSH) is technically challenging at clinical field strengths of 1.5 or 3 T due to its low concentration in the human brain coupled with the fact that conventional single-echo acquisitions, typically used for magnetic resonance (MR) spectroscopy acquisitions, cannot be used to resolve GSH given its overlap with other resonances. In this study, an MR spectral editing scheme was used to generate an unobstructed detection of GSH at 7 T. This technique was used to obtain normative white (WM) and gray matter (GM) GSH concentrations over a two-dimensional region. Results indicated that GSH was significantly higher (P<.001) in GM relative to WM in normal subjects. This finding is consistent with previous radionuclide experiments and histochemical staining and validates this 7 T MR spectroscopy technique. To our knowledge, this is the first study to report normative differences in WM and GM glutathione concentrations in the human brain. Glutathione is a biomarker for oxidative status and this non-invasive in vivo measurement of GSH was used to explore its sensitivity to oxidative state in multiple sclerosis (MS) patients. There was a significant reduction (P<.001) of GSH between the GM in MS patients and normal controls. No statistically significant GSH differences were found between the WM in controls and MS patients. Reduced GSH was also observed in a MS WM lesion. This preliminary investigation demonstrates the potential of this marker to probe oxidative state in MS.  相似文献   

9.
Multi-echo Carr-Purcell-Meiboom-Gill (CPMG) imaging sequences were implemented on 1.5 T and 4.0 T imaging systems to test their ability to measure in vivo multi-component T2 relaxation behavior in normal guinea pig brain. The known dependence of accurate T2 measurements on the signal-to-noise ratio (SNR) was explored in vivo by comparing T2 decay data obtained using three methods to increase SNR (improved RF coil design, signal averaging and increased magnetic field strength). Good agreement between T2 values of nickel-doped agarose phantoms was found between imaging and spectroscopic methods. T2 values were determined for gray matter (GM) and white matter (WM) locations from images of guinea pig brain in vivo. T2 measurements of GM were found to be monoexponential at both field strengths. The mean T2 times for GM were 71 ms at 1.5 T, and 53 ms at 4.0T. The highest average SNR was achieved using an improved RF coil at 4.0T. In this case, two peaks were extracted in WM, a "short" T2 peak at approximately 6 ms, and a "medium" T2 peak at approximately 48 ms. T2 values in GM and the major component of WM were significantly decreased at 4.0T compared to 1.5 T. The improved SNR attained with this optimized imaging protocol at 4.0T has allowed for the first time extraction of the myelin-sensitive T2 component of WM in animal brain in vivo.  相似文献   

10.
Diffusion imaging with high-b factors, high spatial resolution and cerebrospinal fluid signal suppression was performed in order to characterize the biexponential nature of the diffusion-related signal decay with b-factor in normal cortical gray and deep gray matter (GM). Integration of inversion pulses with a line scan diffusion imaging sequence resulted in 91% cerebrospinal fluid signal suppression, permitting accurate measurement of the fast diffusion coefficient in cortical GM (1.142+/-0.106 microm2/ms) and revealing a marked similarity with that found in frontal white matter (WM) (1.155+/-0.046 microm2/ms). The reversal of contrast between GM and WM at low vs high b-factors is shown to be due to a significantly faster slow diffusion coefficient in cortical GM (0.338+/-0.027 microm2/ms) than in frontal WM (0.125+/-0.014 microm2/ms). The same characteristic diffusion differences between GM and WM are observed in other brain tissue structures. The relative component size showed nonsignificant differences among all tissues investigated. Cellular architecture in GM and WM are fundamentally different and may explain the two- to threefold higher slow diffusion coefficient in GM.  相似文献   

11.
The purpose of our study is to trace in vivo and during the perinatal period, the brain maturation process with exhaustive measures of the T2 relaxation time values. We also compared regional myelination progress with variations of the relaxation time values and of brain signal. T2 relaxation times were measured in 7 healthy premature newborns at the post-conceptional age of 37 weeks, using a Carr-Purcell-Meiboom-Gill sequence (echo time 60 to 150 ms), on a 2.35 Tesla Spectro-Imaging MR system. A total of 62 measures were defined for each subject within the brain stem, the basal ganglia and the hemispheric gray and white matter. The mean and standard deviation of the T2 values were calculated for each location. Regional T2 values changes and brain signal variations were studied. In comparison to the adult ones, the T2 relaxation time values of both gray and white matter were highly prolonged and a reversed ratio between gray and white matter was found. The maturational phenomena might be regionally correlated with a T2 value shortening. Significant T2 variations in the brainstem (p < 0.02), the mesencephalon (p < 0.05), the thalami (p < 0.01), the lentiform nuclei (p < 0.01) and the caudate nuclei (p < 0.02) were observed at an earlier time than they were visible on T2-weighted images. In the cerebral hemispheres, T2 values increased from the occipital white matter to parietal, temporal and frontal white matter (p < 0.05) and in the frontal and occipital areas from periventricular to subcortical white matter (p < 0.01). Maturational progress was earlier and better displayed with T2 measurements and T2 mapping. During the perinatal period, the measurements and analysis of T2 values revealed brain regional differences not discernible with T2-weighted images. It might be a more sensitive indicator for assessment of brain maturation.  相似文献   

12.
The apparent diffusion coefficient (ADC) of tissue provides an indication of the size, shape, and orientation of the water spaces in tissue. Thus, pathologic differences between lesions in multiple sclerosis (MS) patients with different clinical courses may be reflected by changes in ADC measurements in lesions and white matter. Twelve healthy subjects and 35 MS patients with a relapsing-remitting (n = 10), benign (n = 8), secondary progressive (n = 8) and primary progressive (n = 9) clinical course were studied. T2-weighted and post-gadolinium T1-weighted images were obtained using a 1.5 T Signa Echospeed magnetic resonance imaging (MRI) system. Diffusion-weighted imaging was implemented using a pulsed gradient spin echo (PGSE) sequence with diffusion gradients applied in turn along three orthogonal directions in order to obtain the average apparent diffusion coefficient (ADCav). Navigator echo correction and cardiac gating were used to reduce motion artifact. ADC maps were derived using a two point calculation based on the Stejskal-Tanner formula. Diffusion anisotropy was estimated using the van Gelderen formula to calculate an anisotropy index. MS lesions had a higher ADC and reduced anisotropy compared with normal appearing white matter. Highest ADC values were found in gadolinium enhancing lesions and non-enhancing hypointense lesions on T1-weighted imaging. MS white matter had a slightly higher ADC and lower anisotropy than white matter of healthy subjects. Lesion and white matter ADC values did not differ between patients with different clinical courses of MS. There was no correlation between lesion ADC and disability. Diffusion-weighted imaging with measurement of ADC using the PGSE method provides quantitative information on acute edematous MS lesions and chronic lesions associated with demyelination and axonal loss but does not distinguish between clinical subtypes of MS.  相似文献   

13.
Tissue characterization for separating malignant from benign tissue is a clinically very important potential of magnetic resonance imaging (MRI). In this study quantitative determination of T1- and T2-relaxation processes was accomplished in five healthy volunteers, 10 patients with benign hyperplasia of the prostate gland and eight patients with prostatic carcinoma. Histological verification was obtained in all the patients. The measurements were performed on a wholebody MR-scanner operating at 1.5 T using six inversion recovery sequences (TR = 4000 msec) for T1-determination and a 32 spin-echo sequence (TR = 3000 or 2000 msec) for T2-estimation. The T1-relaxation curves all appeared monoexponential, whereas the T2-curves in most cases showed a multiexponential behaviour. A considerable overlap of the relaxation curves was seen. Consequently, we found no statistically significant differences between the T1- or the T2-relaxation times of the three groups investigated. It is concluded that tissue characterization based on relaxation time measurements with MRI does not seem to have a clinically useful role in prostatic disease.  相似文献   

14.
In this study, we explore the effect of the lack of myelin on the diffusion characteristics and diffusion anisotropy obtained from high b-value q-space diffusion-weighted MRI (q-space DWI) in excised rat spinal cords. Twenty-one-day-old myelin-deficient (md) mutant (N=6) and control rats (N=6) were used in this study. The MRI protocol included multi-slice T(1), T(2), proton density (PD) MR images and high b-value q-space diffusion MRI measured perpendicular and parallel to the fibers of the spine. q-Space displacement and probability maps, in both directions, as well as displacement anisotropy maps, were computed from the diffusion data. At the end of the MRI protocol, representative spinal cords from both groups were subjected to electron microscopy (EM). The md spinal cords show different gray/white matter contrast in the T(1), T(2) and PD MR images as compared with controls. In addition, the mean displacement extracted from the high b-value q-space diffusion data was found to be dramatically higher in the white matter (WM) of the md spinal cords than the controls when diffusion was measured perpendicular and parallel to the fibers of the spine. However, interestingly, at the diffusion time used in the present study, the difference in the WM displacement anisotropies of the two groups was not found to be statistically significant. Myelin was found to have a pronounced effect on the diffusion characteristics of water in WM but less so on the diffusion anisotropy observed at the diffusion time used in the present study.  相似文献   

15.
Twelve anesthetized mongrel dogs underwent left thoracotomy with placement of a removable ligature around the left circumflex coronary artery. Following a 3 to 6 hour delay, ECG-gated spin-echo MRI was performed. The ligature was then removed reperfusing the heart, and after a 10-15 min period, MRI repeated. Finally, post-sacrifice images were obtained, and the hearts chemically stained for infarct evaluation. The MR images were subjectively and quantitatively evaluated for visibility of the endocardial border and of the injured myocardium, and for changes after reperfusion. The injured tissue was variably visible in vivo, the major limitation a result of motion blurring and artifact. The abnormal tissue was easily visible on MRI in 11 animals, and not clearly visible in one. The endocardial border was easily seen in 10 animals. The variation of calculated relaxation times was high for both normal and ischemic/infarcted myocardium in the beating hearts (normal: T1 = 566 +/- 288, T2 = 38 +/- 6; injured myocardium: T1 = 637 +/- 250, T2 = 41 +/- 12) in contrast, relatively stationary skeletal muscle measured in the same images had narrower ranges (T1 = 532 +/- 199, T2 = 28 +/- 2). Changes with reperfusion were seen, but not reliably. The infarcted or ischemic zones were easily visible on post-sacrifice images in all animals imaged. Post-sacrifice relaxation times were T1 = 564 +/- 69 msec, T2 = 39 +/- 3 msec for normal heart muscle, and 725 +/- 114, T2 = 47 +/- 5 for ischemic/infarcted tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time t = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

17.
Proton spin-lattice and spin-spin relaxation times have been measured in surgically-removed normal CNS tissues and a variety of tumors of the brain. All measurements were made at 20 MHz and 37 degrees C. Between grey and white matter from autopsy human or canine specimens significant differences in T1 or T2 were observed, with greater differences seen in T1. Such discrimination was reduced in samples obtained from live brain-tumor patients due to lengthening in T1 and T2 of white matter near tumorous lesions. Edematous white matter showed T1 and T2 values higher than those of autopsy disease-free white matter. Compared to normal CNS tissues, most brain tumors examined in this study demonstrated elevated T1 and T2 values. Exceptions, however, did exist. No definitive correlation was indicated on a T1 or T2 basis which allowed a distinction to be made between benign and malignant states. Furthermore, considerable variation in relaxation times occurred from tumor to tumor of the same type, suggesting that within a tumor type there are important differences in physiology, biology, and/or pathologic state. Such variation caused partial overlap in relaxation times among certain tumor types and hence may limit the capability of magnetic resonance imaging (MR) alone for the diagnosis of specific disease. Nonetheless, this study predicts that on the basis of T1 or T2 differences most brain tumors are readily detectable by MR via saturation recovery or inversion recovery with appropriate selections of pulse-spacing parameters. In general, tumors can be discriminated against white matter better than grey matter and contrast between glioma and grey matter is usually superior to that between meningioma and grey matter. This work did not consider tissue-associated proton density which should be addressed together with T1 and T2 for a complete treatment of MR contrast.  相似文献   

18.
Experimental gliomas (F98) were inoculated in cat brain for the systematic study of their in vivo T2 relaxation time behavior. With a CPMG multi-echo imaging sequence, a train of 16 echoes was evaluated to obtain the transverse relaxation time and the magnetization M(0) at time T = 0. The magnetization decay curves were analyzed for biexponentiality. All tissues showed monoexponential T2, only that of the ventricular fluid and part of the vital tumor tissue were biexponential. Based on these NMR relaxation parameters the tissues were characterized, their correct assignment being assured by comparison with histological slices. T2 of normal grey and white matter was 74 ± 6 and 72 ± 6 msec, respectively. These two tissue types were distinguished through M(0) which for white matter was only 0.88 of the intensity of grey matter in full agreement with water content, determined from tissue specimens. At the time of maximal tumor growth and edema spread a tissue differentiation was possible in NMR relaxation parameter images. Separation of the three tissue groups of normal tissue, tumor and edema was based on T2 with T2(normal) < T2(tumor) < T2(edema). Using M(0) as a second parameter the differentiation was supported, in particular between white matter and tumor or edema. Animals were studied at 1–4 wk after tumor implantation to study tumor development. The magnetization M(0) of both tumor and peritumoral edema went through a maximum between the second and third week of tumor growth. T2 of edema was maximal at the same time with 133 ± 4 msec, while the relaxation time of tumor continued to increase during the whole growth period, reaching values of 114 ± 12 msec at the fourth week. Thus, a complete characterization of pathological tissues with NMR relaxometry must include a detailed study of the developmental changes of these tissues to assure correct experimental conditions for the goal of optimal contrast between normal and pathological regions in the NMR images.  相似文献   

19.
T2* measurements in human brain at 1.5, 3 and 7 T   总被引:1,自引:0,他引:1  
Measurements have been carried out in six subjects at magnetic fields of 1.5, 3 and 7 T, with the aim of characterizing the variation of T2* with field strength in human brain. Accurate measurement of T2* in the presence of macroscopic magnetic field inhomogeneity is problematic due to signal decay resulting from through-slice dephasing. The approach employed here allowed the signal decay due to through-slice dephasing to be characterized and removed from data, thus facilitating an accurate measurement of T2* even at ultrahigh field. Using double inversion recovery turbo spin-echo images for tissue classification, an analysis of T2* relaxation times in cortical grey matter and white matter was carried out, along with an evaluation of the variation of T2* with field strength in the caudate nucleus and putamen. The results show an approximately linear increase in relaxation rate R2* with field strength for all tissues, leading to a greater range of relaxation times across tissue types at 7 T that can be exploited in high-resolution T2*-weighted imaging.  相似文献   

20.
The T2 behavior of parotid gland tissue was investigated in 11 patients affected by pleomorphic adenoma. A protocol that was previously set up to define acquisition and post-processing procedures, reaching an accuracy of 2.5% in phantoms and an in vivo long term reproducibility of 0.9-8.5%, was used for the evaluations. The measurements were carried out on a whole body, superconducting imager, using a neck coil as a receiver. Some reference gel samples were imaged together with the patient and used to correct T2 results. The sequence protocol was a multispin-echo, 16 echoes. Signals were fitted with mono and biexponential decay models and an automatic choice of the best model was performed using the two chisquared comparison. Two T2 maps (T2 monoexponential or short T2 component, and long T2 component) and chisquared maps were then produced. Pathologic and normal tissues showed a dominant monoexponential decay with a good level of biexponentiality (16%-27% of total fitted pixels) due to partial volume effects from the liquid content. Concerning the biexponentiality, no significant differences were found between the fitted pixel fraction of normal and pathologic tissue, because the T2 long component of the lesion was related both to the edema and saliva content, but probably the increase in the first compensated the decrease in the second. Chisquared maps showed that most of the lesions presented a monoexponential core surrounded by a biexponential border probably due to a solid component similar to normal tissue with partial volume effects from saliva content. Ninety-five percent confidence intervals for normal tissue were 69.40-87.80 ms (monoexponential relaxation), 38.19-44.67 ms and 285.84-691.28 ms (short and long components of biexponential relaxation). For pathologic tissue they resulted 172.17-275.83 ms, 53.86-89.98 ms and 442.10-814.58 ms. The monoexponential component, mostly present in the core of the lesion, was the parameter that better characterized pathologic tissue. A comparison was performed between normal tissue of patients and normal tissue of volunteers, whose statistics was collected in a previous study with the same evaluation protocol. Results showed no significant differences in the biexponential fitted fractions and the comparison of relaxation times. We conclude that, for tissue characterization, a multiexponential analysis should be carried out in order to improve accuracy and to obtain more reliable results. Moreover, other than relaxation calculations, a topographical analysis of relaxation distribution, using for instance the chisquared maps, might in the future give us more useful information on tissue structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号