首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
         下载免费PDF全文
The magnetohydrodynamic(MHD) stagnation point flow of micropolar fluids towards a heated shrinking surface is analyzed.The effects of viscous dissipation and internal heat generation/absorption are taken into account.Two explicit cases,i.e.,the prescribed surface temperature(PST) and the prescribed heat flux(PHF),are discussed.The boundary layer flow and energy equations are solved by employing the homotopy analysis method.The quantities of physical interest are examined through the presentation of plots/tabulated values.It is noticed that the existence of the solutions for high shrinking parameters is associated closely with the applied magnetic field.  相似文献   

2.
  总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper the condition and the conclusion of Toupin-Berdichevskii Theorem is examined, whereby it is explained and demonstrated with an example that the theorem can't be considered as a mathematical expression of Saint-Venant's Principle in Elasticity.  相似文献   

3.
         下载免费PDF全文
The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary differential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate.  相似文献   

4.
The unsteady,laminar,incompressible,and two-dimensional flow of a micropolar fluid between two orthogonally moving porous coaxial disks is considered.The extension of von Karman’s similarity transformations is used to reduce the governing partial differential equations(PDEs) to a set of non-linear coupled ordinary differential equations(ODEs) in the dimensionless form.The analytical solutions are obtained by employing the homotopy analysis method(HAM).The effects of various physical parameters such as the expansion ratio and the permeability Reynolds number on the velocity fields are discussed in detail.  相似文献   

5.
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.  相似文献   

6.
The problem of unsteady oscillatory flow and heat transfer of porous medin sandwiched between viscous fluids has been considered through a horizontal channel with isothermal wall temperatures. The flow in the porous medium is modeled using the Brinkman equation. The governing partial differential equations are transformed to ordinary differential equations by collecting the non-periodic and periodic terms. Closed-form solutions for each region are found after applying the boundary and interface conditions. The influence of physical parameters, such as the porous parameter, the frequency parameter, the periodic frequency parameter, the viscosity ratios, the conductivity ratios, and the Prandtl number, on the velocity and temperature fields is computed numerically and presented graphically. In addition, the numerical values of the Nusselt number at the top and bottom walls are derived and tabulated.  相似文献   

7.
The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin efficiency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin efficiency.  相似文献   

8.
         下载免费PDF全文
Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a uniform angular velocity in a porous medium. For stationary convection, the stable solute gradient parameter and the rotation have stabilizing effects on the system, whereas the magnetic field and the medium permeability have stabilizing or destabilizing effects on the system under certain conditions. The Hall current in the presence of rotation has stabilizing effects for sufficiently large Taylor numbers, whereas in the absence of rotation, the Hall current always has destabilizing effects. These effects have also been shown graphically. The viscoelastic effects disappear for stationary convection. The stable solute parameter, the rotation, the medium permeability, the magnetic field parameter, the Hall current, and the vis-coelasticity introduce oscillatory modes into the system, which are non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.  相似文献   

9.
The combined effects of thermal and mass convection of viscous incompressible and immiscible fluids through a vertical wavy wall and a smooth flat wall are analyzed. The dimensionless governing equations are perturbed into a mean part (the zeroth-order) and a perturbed part (the first-order). The first-order quantities are obtained by the perturbation series expansion for short wavelength, in which the terms of the exponential order arise. The analytical expressions for the zeroth-order, the first-order, and the total solutions are obtained. The numerical computations are presented graphically to show the salient features of the fluid flow and the heat transfer characteristics. Separate solutions are matched at the interface by using suitable matching conditions. The shear stress and the Nusselt number are also analyzed for variations of the governing parameters. It is observed that the Grashof number, the viscosity ratio, the width ratio, and the conductivity ratio promote the velocity parallel to the flow direction. A reversal effect is observed for the velocity perpendicular to the flow direction.  相似文献   

10.
         下载免费PDF全文
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity.The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature.The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters.In comparison with the previously published work,the excellent agreement is shown.The effects of various parameters on the velocity,the microrotation velocity,and the temperature profiles,as well as the skin-friction coefficient and the Nusselt number,are plotted and discussed.  相似文献   

11.
The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-uniform motion. In the first case,the homotopy analysis method (HAM) is used. to obtain the expressions for the velocity and micro-rotation fields. Graphs are sketched for some parameters. The results show that the expansion ratio and the different permeabilities have important effects on the dynamic characteristics of the fluid. Following Xu's model, in the second case which is more general, the wall expansion ratio varies with time. Under this assumption, the governing equations are transformed into nonlinear partial differential equations that can also be solved analytically by the HAM. In the process, both algebraic and exponential models are considered to describe the evolution of α(t) from the initial state α0 to the final state α1. As a result, the time-dependent solutions are found to approach the steady state very rapidly. The results show that the time-dependent variation of the wall expansion ratio can be ignored because of its limited effects.  相似文献   

12.
An incompressible flow in a porous channel with expanding or contacting walls in the presence of a transverse magnetic field is considered. Using similarity transformations, the governing equations are reduced to the nonlinear ordinary differential equations. The exact similar solutions for the different cases of the expansion ratio and the Hartmann number are obtained with a singular perturbation method, and the associated behavior is discussed in detail.  相似文献   

13.
A study of the stabifity of plane Poiseuille flow at higher Reynolds number is made. Within a "triple-deck" structural framework, the qualitative behaviour of the eigenvalue of Orr-Sommerfeld equation is analytically obtained. The corresponding eigenfunction is formulated approximately.  相似文献   

14.
         下载免费PDF全文
In the case of quasi-brittle fracture, at the crack tip there is a small plastic region whose affection cannot be neglected. Therefore the linear elastic asympototic fields must be corrected. In 1965 F. A. McClintock and G. R. Irwin presented a correction which since then has been adopted extensively. Here in this paper, it must be pointed out that such correction is wrong. A correct result is given.Communicated by Chien Wei-zang.  相似文献   

15.
In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.  相似文献   

16.
G. Pontrelli 《Meccanica》1995,30(1):53-62
The steady non-radial flow of an incompressible fluid of second grade in a contracting channel is studied. The dependence of the flow on the material parameters of the fluid and on the channel angle is investigated. A similarity transformation is introduced for the streamfunction which reduces the P.D.E. to a sequence of O.D.E.s. A series solution is employed to solve the problem.
Sommario Si studia il flusso stazionario non radiale di un fluido di secondo grado incomprimibile in un canale convergente, esaminandone la dipendenza dai parametri materiali del fluido e dall'angolo di apertura del canale. Si introduce una trasformazione di similitudine per la funzione di corrente che riduce l'equazione di moto ad una serie di equazioni differenziali ordinarie, risolte numericamente.
  相似文献   

17.
The problem of Stokes entry flow into a semi-infinite circular cylindrical tube was studied in this paper. A new kind of series solutions was derived. Their evident difference from the solutions in References [1,2] is that the present solutions don ’t involve infinite integral. So they are favourable for calculation. We calculated an example by allocated method and obtained satisfied results.  相似文献   

18.
In this communication a generalized threedimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β, Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β, Re and λ on the velocity field are discussed through graphs.  相似文献   

19.
The flow of a solution between parallel plates is considered. The bottom plate is porous, while the top one is an impermeable solid. A computer program based on the control volume approach was developed to analyse the flow and concentration fields. The effects of the slip at the porous wall on the velocity and particle concentration distributions were investigated. It was observed that as the slip increases, the concentration on the porous wall decreases and the maximum velocity moves towards the porous wall. The concentration on the porous wall increases in the flow direction. This increase in the particle concentration along the porous wall may cause a reduction of the porosity and hence a variation in the suction rate along the porous wall. In order to take this effect into account, a linearly varying transverse velocity along the porous wall was considered. The results were compared with the data available in the literature.  相似文献   

20.
探讨了不稳定伸展表面上的薄液膜流动问题.利用相似变换将边界层流动控制方程转化为常微分方程边值问题.利用同伦分析方法获得解析解,讨论不稳定参数对液膜流动的影响,得到一般性规律.将部分级数解与前人的数值解进行比较,结果具有较高的一致性.该方法还可以用于其他科学工程问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号