首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A dispersive quantum system is a quantum system which is both isolated and non-time reversal invariant. This article presents precise definitions for those concepts and also a characterization of dispersive quantum systems within the class of completely positive Markovian quantum systems in finite dimension (through a homogeneous linear equation for the non-Hamiltonian part of the system’s Liouvillian). To set the framework, the basic features of quantum mechanics are reviewed focusing on time evolution and also on the theory of completely positive Markovian quantum systems, including Kossakowski–Lindblad’s standard form for Liouvillians. After those general considerations, a simple two-dimensional example is presented and then applied to describe the neutrino oscillation, with the introduction of a new “dispersive parameter.”  相似文献   

9.
10.
《中国物理 B》2021,30(10):100301-100301
Topological phases and their associated multiple edge states are studied by constructing a one-dimensional non-unitary multi-period quantum walk with parity-time symmetry. It is shown that large topological numbers can be obtained when choosing an appropriate time frame. The maximum value of the winding number can reach the number of periods in the one-step evolution operator. The validity of the bulk–edge correspondence is confirmed, while for an odd-period quantum walk and an even-period quantum walk, they have different configurations of the 0-energy edge state and π-energy edge state. On the boundary, two kinds of edge states always coexist in equal amount for the odd-period quantum walk, however three cases including equal amount, unequal amount or even only one type may occur for the even-period quantum walk.  相似文献   

11.
We investigate truncation schemes for the many-body dynamics of finite fermion systems beyond the time-dependent Hartree-Fock (TDHF) approximation. One approach starts from the quantum Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY-)hierarchy of equations of motion for density matrices. It is shown that simple truncation of higher correlations within this scheme is inconsistent because essential exchange correlations are lost. As an alternative, we study the (extended) exp(S) or coupled-cluster formalism. It provides a wider range of applicability. But it also runs into problems with non-unitary propagation after truncation.  相似文献   

12.
13.
14.
We have developed in the previous works a statistical model of quantum fluctuation based on a chaotic deviation from infinitesimal stationary action which is constrained by the principle of Locality to have a unique exponential distribution up to a parameter that determines its average. The unitary Schrödinger time evolution with Born’s statistical interpretation of the wave function is recovered as a specific case when the average deviation from infinitesimal stationary action is given by ?/2?/2 for all the time. This naturally suggests a possible generalization of the quantum dynamics and statistics by allowing the average deviation fluctuates effectively randomly around ?/2?/2 with a finite yet very small width and a finite time scale. We shall show that averaging over such fluctuation will lead to a non-unitary average-energy-conserving time evolution providing an intrinsic mechanism of decoherence in energy basis in the macroscopic regime. A possible cosmological origin of the fluctuation is suggested. Coherence and decoherence are thus explained as two features of the same statistical model corresponding to microscopic and macroscopic regimes, respectively. Moreover, noting that measurement-interaction can be treated in equal footing as the other types of interaction, the objective locality of the model is argued to imply no-signaling between a pair of arbitrarily separated experiments.  相似文献   

15.
The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a “reinterpretation postulate” to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.  相似文献   

16.
17.
笛卡儿坐标下空间转子体系的双波函数描述   总被引:8,自引:1,他引:7       下载免费PDF全文
刘全慧 《物理学报》1993,42(4):522-527
本文给出了笛卡儿坐标下空间转子体系的双波函数描述,得到了该坐标下每一个力学量的时间演化方程。因而我们的描述是完备的。经典力学运动方程是我们所得演化方程的经典极限。而通常的量子力学描述是我们描述的统计结果。本文还表明,笛卡儿坐标比球坐标能提供更多的物理内容。 关键词:  相似文献   

18.
19.
Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing electromagnetic interactions. Usually, the “environment” of a microscopic scattering system (e.g., a proton) causes an ultrafast decoherence, thus making atomic and/or nuclear entanglement effects not directly accessible to experiments. However, neutron Compton scattering (NCS) and electron Compton scattering represent ultrafast techniques operating in the sub-femtosecond timescale, thus opening a way for investigation of such dehoherence and short-lived entanglement phenomena of atoms in molecules and condensed matter. The experimental context of NCS and a new striking scattering effect from protons (H-atoms) in several condensed systems and molecules are described. In short, one observes an “anomalous” decrease of scattering intensity from protons, which seem to become partially “invisible” to the neutrons. The experiments apply large energy (several electronvolts) and momentum (10–200 Å?1 transfers, and the collisional (or scattering) time between the neutron and a struck proton is only 100–1000 attoseconds long. Similar results are also obtained with electron-atom Compton scattering at large momentum transfers. As an example, we present new NCS experimental results from a single crystal, which also provide new physical insights into the attosecond quantum dynamics of protons in molecules and condensed matter. Theoretical discussions and models are presented which show that the effect under consideration is caused by the non-unitary time evolution (due to decoherence) of open quantum systems during the ultrashort, but finite, time-window of the neutron-proton scattering process. The conceptual connection with the well known Quantum Zeno Effect is pointed out. The experimental results, together with their qualitative interpretation “from first principles,” show that epithermal neutrons being available at spallation sources, and electron spectrometers providing large momentum transfers, may represent novel tools for investigation of thus far unknown physical and chemical attosecond phenomena.  相似文献   

20.
We discuss the problem whether the time evolution in quantum physics should be represented by the time-symmetric unitary-group evolution, i.e., whether time t extends over???∞?<?t?<?+∞ or it is more realistic to describe quantum systems by a mathematical theory, for which time t starts from a finite value t 0: t 0?≤?t?<?+∞, for which the mathematicians would choose t 0?=?0,1 but which could be any finite value. If the quantum system in the lab should be described by some kind of quantum theory, one should also admit the possibility that the solution of the dynamical equations needs to be found under boundary conditions that admit a semigroup evolution. It is remarkable that results in lab experiments indicate the existence of an ensemble of finite beginnings of time $ t_0^{(i) } $ for an ensemble of individual quanta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号