首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Transparent hydrophobic polymer coating was prepared from methacrylate copolymer with molecular modeling in order to improve hydrophobicity and durability. Organic-inorganic hybridization improved the durability of the thin films. Furthermore the control of hydrophobicity and water droplet sliding properties of the flat coating was successfully performed. Water droplet sliding angle depended on the chemical structure of the materials, not on the hydrophobicity, while sliding motion simply depended on the hydrophobicity.  相似文献   

2.
SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on silica-glass substrates from autoclaved sols prepared at 100–180 °C. The samples were exposed to fluoro-alkyl silane (FAS) vapor to give hydrophobicity. All nanoparticle samples before FAS treatment had transmittances higher than 93% and such values were preserved even after FAS treatment. We examined root mean square roughnesses of the nanoparticle coatings with a Scanning Probe Microscope. We also examined their static and dynamic wettabilities with a contact angle meter and calculated their adhesive energies and surface free energies (SFEs). The surface roughness of the nanoparticle coating increased with the increase of the autoclave temperature. In addition, higher autoclave temperature caused increases in the sliding angle and decreases in the SFE. Interestingly, the higher the contact angle was, the larger the sliding angle was, although smaller sliding angle was expected with a larger contact angle.  相似文献   

3.
采用喷涂技术,在马口铁表面喷涂环氧树脂和二氧化硅复合涂层,研究了二氧化硅的含量对表面疏水性的影响,复合涂层的疏水性随二氧化硅含量的增加而增加.当二氧化硅质量分数增大到40%时,所制备的复合涂层与水的接触角约为141°且具有较小的滚动角.  相似文献   

4.
For the fabrication of the “lotus-type” fibers, a combination of two major requirements, low surface energy and the magnified of the degree of roughness, should be utilized. In this research, the possible surface roughening effect of aminolysis of the polyester fibers was applied to manipulated surface topography while fluorocarbon polymer layer generates low surface energy. The results were compared with the method that created variety of surface roughness by changing the size of the nano-silica particles using the 3M water/oil repellency test, sliding (tilt) angle, microscopy (SEM), decay of hydrophobicity, self-cleaning, and tensile properties. The results indicated the usefulness of the conventional polyester aminolysis process to control surface roughness for enhancement of fabric hydrophobicity with sliding angle as low as 12°.  相似文献   

5.
Vegetable oils were combined with recent nanotechnology as a sustainable method for tuning the hydrophobicity of cellulose and paper surfaces. Different soy-, sunflower-, corn-, castor-, rapeseed- and hydrogenated oils were incorporated into an aqueous dispersion of hybrid styrene maleimide nanoparticles. Here, we investigate the formation of novel coatings from these dispersions and their performance on paper and paperboard, compared with model aluminum substrates. The coated papers are evaluated by static and dynamic contact angles, microscopy, atomic force microscopy, infrared and Raman spectroscopy. The nanoparticle pigments form a porous coating after drying, while the water repellence and hydrophobicity of paperboard and paper improved with contact angles of 90–99° after drying and 98–112° after ageing. The coatings with poly(unsaturated) oils have best hydrophobicity for dispersions with an optimum viscosity of 115–150 cp required for good coverage of the paper. While homogeneous coverage of the cellulose fibers is a primary requirement, thin coatings often provide higher contact angles on paper due to roughness of the underlaying fibrous surface. After ageing, the coatings are chemically stable without oil leakage and constant imide content, while an increase in contact angles is attributed to variations in coating morphology through local re-arrangements over the paper substrate.  相似文献   

6.
This research aimed to create multifunctional cellulose fibres with water- and oil-repellent, self-cleaning, and flame retardant properties. A sol mixture of fluoroalkyl-functional siloxane, organophosphonate and methylol melamine resin was applied to cotton fabric by the pad-dry-cure method. Successful coating was verified by atomic force microscopy and Fourier transform infrared spectroscopy. The functional properties of the coated fibres were investigated using the static contact angles of water and n-hexadecane, the water sliding angles, the vertical test of flammability, the limiting oxygen index, and simultaneous thermal analysis. The results reveal that a homogeneous composite inorganic–organic polymer film formed on the cotton fabric surface exhibited the following properties: static contact angle of water of 150° and of n-hexadecane of 128°, water sliding angle of 10°, limiting oxygen index of 34 %, and high thermal stability. These results demonstrate the synergistic activity of the compounds in the coating, which resulted in the creation of a “lotus effect” on the fabric surface as well as excellent flame retardancy and thermal stability.  相似文献   

7.
This study investigated the adsorption of phthalic acid (PA) in aqueous phase on two activated carbons with different chemical natures, analyzing the influence of: solution pH, ionic strength, water matrix (ultrapure water, ground water, surface water, and wastewater), the presence of microorganisms in the medium, and the type of regime (static and dynamic). The activated carbons used had a high adsorption capacity (242.9 mg/g and 274.5 mg/g), which is enhanced with their phenolic groups content. The solution pH had a major effect on PA adsorption on activated carbon; this process is favored at acidic pHs. PA adsorption was not affected by the presence of electrolytes (ionic strength) in solution, but was enhanced by the presence of microorganisms (bacteria) due to their adsorption on the carbon, which led up to an increase in the activated carbon surface hydrophobicity. PA removal varies as a function of the water type, increasing in the order: ground water相似文献   

8.
The aquasonolytic rate constants of cyclic C6H(X), aliphatic C6H(X), thioethers, thiophenes, and N-heterocyclic compounds show over a 90-fold variation under identical conditions of ultrasonic irradiations. Henry's Law constant of the substrate has a substantial effect on the aquasonolytic rate; a higher Henry's Law constant leads to a aquasonolytic rate constant, which indicating the transfer process of organic substrate between bulk liquid and cavitational bubbles is essential for aquasonolysis. The aquasonolytic rate constants, however, dramatically show an irregular variation with increasing vapor pressure among various substrates. Although the volatility of substrate has been widely regarded as a basic factor influencing aquasonolysis, it seems that vapor pressure of substrate is not a determining one that accounts for the difference of aquasonolytic rate constants. In contrast, the hydrophobic parameters of volatile substrate such as water solubility and octanol-water partition coefficient have shown obvious correlation with the aquasonolytic rate constant for the model compounds; a higher hydrophobicity of volatile substrate results in a higher aquasonolytic rate constant. It could be concluded that the transfer process from bulk liquid to cavitational bubbles and the aquasonolytic kinetics of organic substrate are jointly controlled by the hydrophobicity and volatility; therein the hydrophobicity dominates the transfer process and the aquasonolysis of volatile substrate.  相似文献   

9.
聚苯硫醚超疏水复合涂层的制备与性能   总被引:1,自引:0,他引:1  
利用工业原料聚苯硫醚微粉和疏水性二氧化硅纳米粉末,采用喷涂法在瓷砖表面制备了疏水复合涂层.研究了热处理温度、组分配比对涂层表面形貌、粗糙度和接触角的影响,发现随着热处理温度升高,涂层表面粗糙度增大,随着疏水性二氧化硅含量的增加,由于表面聚集的疏水性二氧化硅增多,涂层疏水性增强,在热处理温度为280℃、疏水性二氧化硅与聚苯硫醚质量比为1∶1时,可获得超疏水涂层,涂层的接触角大于150°,滚落角小于4°,pH值为1~14的水溶液在其表面都具有很高的接触角.超疏水涂层具有良好的自清洁效果,并且经落沙法实验测定,超疏水涂层耐刮伤性能良好.  相似文献   

10.
The enthalpy-entropy compensation in micellization of sodium dodecyl sulphate (SDS) in binary mixtures of water/methanol (MeOH), water/ethylene glycol (EG) and water/glycerol (GL) over a temperature range of 10–60°C was examined. When the cosolvent concentration was low, the critical micelle concentration (CMC) depended only on the total amount of the hydroxyl group added. When the cosolvent concentration was high, the increase in CMC followed the sequence: MeOH>EG>GL. Enthalpy and entropy changes were evaluated from which the compensation temperature was determined. Both enthalpy and entropy changes decreased on the addition of the cosolvents, indicating a lowering of solution hydrophobicity. The compensation temperature was found as a constant over the cosolvent concentration range, as a result, was not a good index for characterizing the solute/solvent interactions. The two reference temperatures at which the enthalpy-entropy change respectively became zero were strongly influenced by the cosolvent addition, therefore could serve as a proper index for solution hydrophobicity.  相似文献   

11.
In order to improve the shortcomings of paper mulch, such as the low water resistance and weather fastness in practical application, the paper mulch with a superhydrophobic structure was prepared by depositing zinc oxide layer and silicon dioxide layer on the surface of paper mulch by the solution impregnation method, the paper mulch surface treatment method is simple and environmentally friendly. The surface chemical composition and surface morphology of paper mulch before and after UV aging were characterized, respectively. The wetting property, bouncing property, and mechanical stability of paper-based film were studied. The results showed that the static contact angle of the superhydrophobic paper mulch was as high as 161.77°, and the average sliding angle was only 3.5°, which also showed excellent droplet bounce performance and mechanical stability. After UV aging experiment, the static contact angle of super-hydrophobic paper mulch was increased to 163.64°, and the sliding angle was reduced to 2.5°. Its excellent performance could still be maintained, showing excellent UV resistance, which improved the weather fastness and water resistance of paper mulch to a certain extent, and laid a foundation for the next large-scale field test.  相似文献   

12.
In this paper, we report the experimental results of surface friction between thermoresponsive poly(N-isopropylacrylamide) gels in water. The static friction force was found to depend on the waiting period prior to slider movement after contact between gel surfaces, which was a result of two relaxation mechanisms: the stress decay process due to macroscopic deformation under a normal load and the microscopic conformational change in the real contact area of polymer networks. The sliding velocity and the normal load dependence of the kinetic friction force were extensively measured. The results suggested that the following two mechanisms depended on the sliding velocity: the friction force generated by direct contact of the solid-like behavior and the viscous resistance of the liquid-like behavior. The strong temperature dependence of kinetic friction was observed, which was a result of a change in the balance between hydrophobic and hydrophilic interactions. The experimental results are discussed in terms of the multi-asperity contacts between the swollen gel/gel interfaces (solid friction, depending on the waiting period) and the viscous resistance and lubricating effect between the gel/water interfaces (fluid friction, depending on the sliding velocity).  相似文献   

13.
We constructed a coating with controllable microstructure on the substrate by static breath figure (BF) method. In the atmosphere of water, when the fluorine-containing 1H,1H,2H,2H-perfluorooctyl polyacrylate-block-polystyrene copolymer (PTFOA-b-PS (4 h)) synthesized via atom transfer radical polymerization for 4 h was dissolved in carbon disulfide (CS2) and then coated on the silicon wafer, the concentrated pore size and uniform micro-pore structure was successfully constructed on the surface. However, the hydrophobicity of the resulting microporous coating was not so good. An interesting result is that when the copolymer solution of PTFOA-b-PS (2 h) in tetrahydrofuran (THF) was used under the MeOH/H2O atmosphere (the methanol content was 60% or 80%), the microsphere coating can be produced on the substrate surface to obtain the excellent hydrophobicity. The water contact angles (WCAs) were 148.8 ± 1.8° and 150.3 ± 1.8°, respectively. Energy dispersive X-ray spectrometer (EDS) results showed that the fluorine element was enriched in the outerfield of the microsphere coating. The low surface energy of fluorine combined with the rough and complex structure of the microspheres can effectively improve the hydrophobicity of the coating.  相似文献   

14.
Tensiometric contact angle measurements of diamond surfaces in both the air:water and octane:water systems reveal moderate hydrophobicity, as might be expected of a surface with a minority of oxygen-containing groups. High-temperature reaction with oxygen or hydrogen leads to large changes in the contact angles. Spectroscopic methods show a “one-third” coverage by oxygen. The response to pH and adsorption of ferric ion suggests that the oxygen is present as an hydroxyl group. Steric resistance to higher oxide coverage, because of the small lattice constant of the crystal, may be an explanation for the natural hydrophobicity of the diamond surface.  相似文献   

15.
Polyphosphazenes are a class of hybrid organic-inorganic macromolecules with high thermo-oxidative stability and good solubility in many solvents. Fluoroalkoxy phosphazene polymers also have high surface hydrophobicity. A method is described to tune this surface property while maintaining the advantageous bulk materials characteristics. The polyphosphazene single-substituent polymer, poly[bis(2,2,2-trifluoroethoxy)phosphazene], with flat film, fiber mat, or bead mat morphology was surface functionalized using an atmospheric plasma treatment with oxygen, nitrogen, methane, or tetrafluoromethane/hydrogen gases. Surface chemistry changes were detected by static water contact angle (WCA) measurements as well as X-ray photon spectroscopy (XPS). It was found that changes in the WCA of as much as 150 degrees occurred, accompanied by shifts in the ratio of elements on the polymer surface as detected by XPS. Overall this plasma technique provides a convenient method for the generation of specific surface characteristics while maintaining the hydrophobicity of the bulk material.  相似文献   

16.
Molecular dynamics simulations are performed to study the dynamics of interfacial water confined in the interdomain region of a two-domain protein, BphC enzyme. The results show that near the protein surface the water diffusion constant is much smaller and the water-water hydrogen bond lifetime is much longer than that in bulk. The diffusion constant and hydrogen bond lifetime can vary by a factor of as much as 2 in going from the region near the hydrophobic domain surface to the bulk. Water molecules in the first solvation shell persist for a much longer time near local concave sites than near convex sites. Also, the water layer survival correlation time shows that on average water molecules near the extended hydrophilic surfaces have longer residence times than those near hydrophobic surfaces. These results indicate that local surface curvature and hydrophobicity have a significant influence on water dynamics.  相似文献   

17.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   

18.
Four patterned surfaces with hydrophilic areas of different sizes were prepared using photolithography with a smooth octadecyltrimethoxysilane (ODS) hydrophobic coating. The hydrophilic area in the surfaces was aligned hexagonally with a constant area fraction. The sliding angle and contact angle hysteresis of the water droplets increased concomitantly with increasing pattern size. The increase of the contact line distortion between defects at the receding side plays an important role in this trend. The droplet sliding velocity also increased concomitantly with increasing pattern size. This trend was simulated by a simple flow model. The contribution of the interface between the ODS region and the hydrophilic area was deduced from this trend. This study demonstrated the different size dependency of the chemical surface defects for sliding behavior between the critical moment at which a droplet slides down and the period when a droplet is sliding.  相似文献   

19.
Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures   总被引:2,自引:0,他引:2  
Superhydrophobic polyolefin surfaces were prepared by simultaneous micro- and nanostructuring. Electropolished aluminum foil was microstructured with a micro working robot and then anodized in polyprotic acid. The surface microstructure can be tailored by adjusting the settings of the micro working robot and the nanostructure by adjusting the parameters of the anodization procedure. Surface structuring was done by injection molding where a microstructured anodized aluminum oxide mold insert was used to pattern the surfaces. Structuring had a marked effect on the contact angle between the injection-molded polyolefins and water. When the optimized microstructure was covered with nanostructure, the static contact angle between polypropylene and water obtained a value of about 165 degrees and the sliding angle decreased to about 2.5 degrees. The superhydrophobic state was achieved.  相似文献   

20.
The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water.In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure.The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号