首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
Magnetic properties, microstructure, and phase evolution of Pr lean and boron-enriched PrxFebal.TiyB20−x (x=4–9; y=2.5–5) melt-spinning ribbons with nanostructures have been investigated. Based on thermal magnetic analysis (TMA), for y=2.5, two phases, namely Pr2Fe14B and α-Fe, were found for ribbons with x=9, while additional two metastable phases, Pr2Fe23B3 and Fe3B, existed for x=4, 7 and 8. With the decrease of Pr content, the remanence increases but coercivity decreases. The optimal properties of Br=9.5 kG, iHc=10.7 kOe, and (BH)max=17.8 MG Oe are achieved in Pr9Febal.Ti2.5B11 nanocomposites. On the other hand, higher Ti substitution for Fe in Pr7Febal.TiyB13 ribbons could refine the grain size and suppress the metastable Pr2Fe23B3 and Fe3B phases effectively. The excellent permanent magnetic properties are mainly dominated by the nanoscaled microstructures and the coexistence of sufficient magnetically soft phases, Fe3B, Pr2Fe23B3 and α-Fe, with magnetically hard Pr2Fe14B phase.  相似文献   

2.
Fully dense nanocomposite magnets containing hard R2Fe14B and soft α-Fe phases were produced from both melt-spun and mechanically milled alloys by hot pressing and subsequent die upsetting. Although R-lean R–Fe–B alloys that do not contain the grain-boundary R-rich phase are known not to be susceptible to texture development by means of die upsetting, we found that small additions of Cu make the texturing possible. The resulting microstructure of oriented platelet grains is similar to that of the R-rich die-upset magnets. Properties of the Cu-containing R2Fe14B/α-Fe die-upset magnets can be further improved by adding Ga. The anisotropic Pr12Fe80Cu1Ga1B6 magnet made from mechanically milled alloy and containing 17.2 wt% α-Fe had a remanence of 13 kG and a maximum energy product of 23.4 MG Oe. The Pr11.25Fe80.75Cu1Ga1B6 magnet made from melt-spun alloy and containing 16.2 wt% α-Fe had a maximum energy product of 19.9 MG Oe. The low coercivity of 3–4 kOe typical for the Cu-containing R2Fe14B/α-Fe die-upset magnets is due to the relatively coarse α-Fe grains. The latter grains are too large for intergranular exchange interaction, but, nevertheless, they are well coupled with the R2Fe14B grains by a long-range magnetostatic interaction.  相似文献   

3.
Polycrystalline refractory metal-substituted Pr3(Fe0.6M0.1Co0.3)27.5Ti1.5 (M=V, Ti, Zr, Mo, Nb,Cr) and Pr3(Fe0.5Co0.5)27.5Ti1.5 have been studied for high-temperature permanent magnetic materials. X-ray diffraction showed the main phase to be the 3:29 phase. We observed the highest reported TC (Curie temperature) of 640 °C for the 3:29 system in the Pr3(Fe0.5Co0.5)27.5Ti1.5. In the refractory metal-substituted systems, the highest TC of 480 °C was observed for the Nb-substituted alloy. SEM measurements showed that Ti in Pr3(Fe0.6Ti0.1Co0.3)27.5Ti1.5 is deposited near the grain boundary. HA (anisotropy energy) of V-substituted alloy is as high as 72 kOe, the highest reported in the 3:29 system and is ∼200% higher than 24 kOe observed in Pr3(Fe0.7Co0.3)27.5Ti1.5. Cr and Ti substitutions show an increase of 65% (40 kOe) and 45% (35 kOe) in HA respectively. MS (saturation magnetization) values were ∼100 emu/g and are lower than that observed in Pr3(Fe0.7Co0.3)27.5Ti1.5.  相似文献   

4.
Nanostructured Pr8Fe86−xVxB6−yCy (x=0, 1; y=0, 1) ribbons composed of Pr2Fe14B and α-Fe phases with a high coercivity are fabricated by direct melt spinning. The effects of a single addition of V and a combined addition of V and C on the structures and magnetic properties of melt-spun Pr8Fe86VB6−xCx (x=0 and 1) ribbons have been investigated. Compared with addition-free ribbons, 1 at% V addition is found to reduce the grain sizes of the samples and improve their magnetic properties due to a strong exchange coupling between the hard and the soft phase. A remanence ratio of 0.82, a coercive field of 6.2 kOe and a maximum energy product of 23.4 MGOe in melt-spun Pr8Fe85VB6 ribbons are obtained at room temperature. The combined addition of V and C is found to lead to the formation of an intermediate phase of VC at grain boundaries, which appears as a pinning barrier during magnetization and results in an increase of the coercivity value to 6.9 kOe for melt-spun Pr8Fe85VB5C ribbons.  相似文献   

5.
6.
Effects of the conventional hydrogenation disproportionation desorption recombination (HDDR) process and the additions of Co and Zr on anisotropy of HDDR PrFeB-type magnetic materials are investigated. The results show that the degree of anisotropy in conventional HDDR Pr13Fe80B7 materials decreases monotonically with the prolonged disproportionation time, and short disproportionation time is helpful for preparing highly anisotropic Pr13Fe80B7 material. However, it is notable that the degree of anisotropy in conventional HDDR Pr13Fe80B7 materials is significantly smaller than that in solid-HDDR Pr13Fe80B7 materials with the same disproportionation time. At the same time, it is found that the addition of Co and Zr may make HDDR Pr-Fe-B materials that have higher anisotropy compared with HDDR pure ternary Pr13Fe80B7 materials under the same HDDR process, but their degree of anisotropy will also decrease monotonically with the prolonged disproportionation time, and will be close to zero when the disproportionation time is greater than 20 h. Based on this, the origin of anisotropy is discussed by X-ray diffraction (XRD) investigations for the disproportionated products of the above alloys. The results show that the origin of anisotropy in HDDR Pr-Fe-B materials with the addition of Co or Zr may differ from that in HDDR pure Pr13Fe80B7 materials, and the former maybe from the residual “Pr2(Fe,Co,Zr)14B” nucleus while the latter is not. Finally, it is also found that HDDR Pr-Fe-B materials with Co or Zr can obtain high-magnetic properties even if the high-desorption temperature is used, and this shows the addition of Co and Zr may make HDDR Pr-Fe-B materials that have a larger process temperature range.  相似文献   

7.
The effect of Co substitution on the structure and magnetic properties of mechanically alloyed Pr14Tb2Fe76−xCoxC6B2 and Pr16Fe76−xCoxC6B2 (x=0–20x=020) alloys has been studied systematically. The main phase in the alloys is Pr2Fe14C-type carbide, coexisting with a small amount of α-Fe and rare-earth-rich phases. In addition to the increasing of the Curie temperature of the Pr2Fe14C-type phase, Co substitution can affect the magnetic properties by adjusting the α-Fe fraction of the alloys. The increase of both coercivity and remanence has been realized in a certain composition range. This increase may be attributed mainly to the enhancement of the effective anisotropy constant KeffKeff of the magnets due to the reduced α-Fe fraction with a small Co addition. The highest coercivity iHc of 20.3 kOe and the optimum energy product (BH)max of 10.3 MG Oe have been obtained for the Pr14Tb2Fe69.5Co6.5C6B2 alloy.  相似文献   

8.
The structural and magnetic properties of Nd12Fe82B6 and Nd10M2Fe82B6 (M = Nb, Ti, Zr, Cr) alloys prepared using arc melting and melt spinning have been investigated. All the samples are found to crystallise with a tetragonal Nd2Fe14B phase without any alloy or elemental impurities. There is a small decrease in the unit cell volume of Nd2Fe14B due to transition metal (M) addition. The substitution of Nb and Ti refines and homogenises the nanostructure of the alloys, promoting intergrain exchange coupling leading to an increase in the remanence and energy product. For example, the remanence and energy product of Nd12Fe82B6 and Nd10Nb2Fe82B6 are 8.4 kG and 15 MGOe, and 9.9 kG and 20 MGOe, respectively. The J(T) curves are similar to those of a single phase ferromagnetic material suggesting no segregation of ferromagnetic impurities. The observed structural and magnetic properties are consistent with the fact that the substitutional transition metal atoms occupy the Nd site of the tetragonal Nd2Fe14B crystal lattice. The improvement of magnetic properties of nanocrystalline Nd2Fe14B alloys with the decrease in Nd concentration may be beneficial for the application of this material in bonded magnets.  相似文献   

9.
The lean rare-earth Pr4.5Fe77−xTixB18.5 (x=0, 1, 4, 5) nanocomposite alloys were prepared by melt spinning method and subsequent thermal annealing. The effect of Ti content and annealing temperature on the magnetic properties and the microstructure of these magnets were investigated. The enhancing coercivity Hc from 211.4 to 338.2 kA/m has been observed at the optimal annealing temperature of 700 °C by the addition of 5 at% Ti in Pr2Fe14B/Fe3B alloys. It was also found that increasing Ti content leads to marked grain refinement in the annealed alloys, resulting in strong exchange-coupling interaction between the hard and the soft phases in these ribbons. In addition, the magnetization reversal behaviors of Pr2Fe14B/Fe3B nanocomposites were discussed in detail.  相似文献   

10.
Highly anisotropic SmCo5 nanocrystalline powders with grain size in the range 5-20 nm were processed through surfactant and magnetic field-assisted milling. The SmCo5 nanocrystalline powders so obtained by this method possess unusual characteristics such as reduction in particle size, platelet-structure and high remanence values. A possible mechanism for achieving remanence enhancement with the surfactant-coated SmCo5 powders has been discussed. Besides, the resin-bonded magnets processed with the surfactant-coated SmCo5 powders showed relatively higher density, induction remanence and energy product with strong anisotropic behavior than those of the magnets processed with the conventionally milled SmCo5 powders. Maximum values of Hci (16 kOe), Br (4.66 kG) and (BH)max (5.5 MG Oe) were achieved for the resin-bonded magnets processed with the surfactant-coated powders.  相似文献   

11.
In boron-substituted melt-spun Sm(Co,Fe,Cu,Zr)7.5-type alloys a nanocomposite microstructure and high coercivities in both as-spun and short-time annealed ribbons can be obtained. In the present study three different compositions, namely Sm(Co0.73Fe0.1Cu0.09Zr0.04B0.04)7.5, Sm(Co0.70Fe0.1Cu0.12Zr0.04B0.04)7.5 and Sm(Co0.70Fe0.1Ni0.12Zr0.04B0.04)7.5 have been examined in order to investigate the influence of composition on the magnetic properties and the microstructure. Melt-spun ribbons have been obtained and annealing has been followed under argon atmosphere for 30–75 min at 600–870 °C. For the as-spun ribbons the TbCu7-type of structure and fcc-Co as a secondary phase have been identified in the X-ray diffraction patterns. For the annealed ribbons above 700 °C the 1:7 phase transforms into 2:17 and 1:5 phases. The TEM studies have shown a homogeneous nanocrystalline microstructure with average grain size of 30–80 nm. Coercivity values of 15–27 kOe have been obtained from hysteresis loops traced in non-saturating fields. The coercivity decreases with temperature, but it is sufficiently large to maintain values higher than 5 kOe at 380 °C.  相似文献   

12.
Ribbons of nominal composition (Pr9.5Fe84.5B6)0.96Cr0.01(TiC)0.03 were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction reveals two main phases, one based upon α-Fe and the other upon Pr2Fe14B. The ribbons show exchange spring behavior with Hc=12.5 kOe and (BH)max=13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed that the coupled behavior is observed when the microstructure consists predominantly of α-Fe grains (diameter ∼100 nm.) surrounded by hard material containing Pr2Fe14B. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a partially-coupled sample. The FORC diagrams show two strong peaks for both the partially-coupled sample and for the well-coupled material. In both cases, the localization of the FORC probability suggests demagnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure.  相似文献   

13.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

14.
Glass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, T g , and the crystallization peak temperature, T p , display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower T g and T x temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between T g and T x suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.  相似文献   

15.
The phases, microstructure, and magnetic properties of Co80Zr18−xNbxB2 (x=1, 2, 3, and 4) melt-spun ribbons were investigated. The small substitution of Nb for Zr in the Co–Zr–B melt-spun ribbons resulted in the improvement of magnetic properties, especially the coercivity. The main effect of added Nb on the coercovity of Co–Zr–Nb–B melt-spun ribbons, originated from modification of the grain size of Co11Zr2 phase. The coercivity of the Co–Zr–Nb–B melt-spun ribbons depends on the annealing temperature. The optimal magnetic properties of Hc=5.1 kOe, and (BH)max=3.4 MGOe were obtained in the Co80Zr15Nb3B2 melt-spun ribbons annealed at 600 °C for 3 min.  相似文献   

16.
Nanostructured Nd9.5Fe84−xB6.5Tax (x=0, 0.5, 1, 1.5, and 2) ribbons composed of Nd2Fe14B and α-Fe phases with a high coercivity and maximum energy product are fabricated by direct melt spinning. The effects of Ta addition on the structures and magnetic properties of melt-spun Nd9.5Fe84−xB6.5Tax (x=0, 0.5, 1, 1.5, and 2) ribbons have been investigated. Compared with addition-free ribbons, small addition of Ta is found to reduce the grain sizes of the samples and improve their magnetic properties due to a strong exchange coupling between the Nd2Fe14B hard phase and α-Fe soft phase. A coercive field of 750 kA/m and a maximum energy product of 158 kJ/m3 in melt-spun Nd9.5Fe82.5B6.5Ta1.5 ribbons are obtained at room temperature.  相似文献   

17.
The TbxHo0.75−xPr0.25(Fe0.9B0.1)2 (x=0, 0.1, 0.15, 0.2, 0.25, and 0.3) compounds are found to stabilize in a cubic Laves phase structure. The lattice parameter, magnetostriction (at 10 kOe), and Curie temperature are found to increase with increasing Tb content. The compound with x=0.15 exhibits a possible anisotropy compensation between the Tb and (Ho/Pr) sublattices. The easy magnetization direction rotates towards the 〈1 1 1〉 from the 〈1 0 0〉 direction, with increasing Tb content. The splitting of the (4 4 0) peak accompanied by the spontaneous magnetostriction-induced rhombohedral distortion is observed for compounds with x?0.15 and the spontaneous magnetostriction (λ1 1 1) is found to increase with Tb content.  相似文献   

18.
The magnetic properties and microstructure were studied for bulk Nd11.5Fe72.4Co9Nb1B6.1 magnets synthesized by hot-pressing and subsequent die-upsetting the melt-spun ribbons with additions of three kinds of low-melting-point metal (Zn, Al and Sn). Die-upset Nd11.5Fe72.4Co9Nb1B6.1 magnets have low magnetic properties since they have an inhomogeneous microstructure with many coarse grains. The microstructure of die-upset magnets remains almost unchanged with Al and Sn additions, which only have negative effects on the magnetic properties. Different from Al and Sn additions, Zn addition changes the phase composition of the starting melt-spun powers due to the reaction of Zn and Nd2Fe14B during hot-pressing and hot-deforming and enhances the development of the desired [0 0 1] texture and improves the microstructure of die-upset magnets. As a result, an anisotropic magnet with good maximum energy product (221 kJ/m3) and high coercivity (670 kA/m) is obtained by adding 2 wt% Zn to the Nd11.5Fe72.4Co9Nb1B6.1 alloy.  相似文献   

19.
Nd–Fe–B-type hard phase single layer films and nanocomposite Nd28Fe66B6/Fe50Co50 multilayer films with Mo underlayers and overlayers have been fabricated on Si substrates by rf sputtering. The hysteresis loops of all films indicated simple single loops for fixed Nd–Fe–B layer thickness (10 nm) and different FeCo layer thickness (dFeCo=1–50 nm). The remanence of these films is found to increase with increasing dFeCo and the coercivity decrease with increasing dFeCo. It is shown that high remanence is achieved in the nanocomposite multilayer films consisting of the hard magnetic Nd–Fe–B-type phase and soft magnetic phase FeCo with 20 nm?dFeCo?3 nm. The sample of maximum energy product is 27 MG Oe for dFeCo=5 nm at room temperature. The enhancement of the remanence and energy products in nanocomposite multilayer films is attributed to the exchange coupling between the magnetically soft and hard phases.  相似文献   

20.
《Current Applied Physics》2015,15(4):461-467
We have successfully developed a Dy-free grain boundary diffusion process with neodymium hydride (NdHx) alloy to the permanent magnet Nd2Fe14B powders using hydrogenation – disproportionation – desorption – recombination (HDDR) method. All the diffusion treatments were performed at 700–800 °C for various annealing time under the high vacuum with rotating diffusion method that effectively control the abnormal grain growth. The coercivities of Dy-treated Nd2Fe14B powders were varied from 9.5 kOe to 13.2 kOe but the remanence was decreased to 8.1 kG (10% reduction) depending on dysprosium hydride (DyHx) content and diffusion treated time. However, the coercivity and remanence of Dy-free diffusion treated powder have been increased to 12.2 kOe (28.5% enhancement) and 11.1 kG (22% enhancement) at the optimal diffusion treatment (800 °C for 3 h), respectively. This unique simultaneous enhancement is to isolate the magnetic coupling between Nd2Fe14B grains by creating non-magnetic Nd grain boundaries and enhance the alignment of the Nd2Fe14B hard magnetic phase, fabricated by optimal diffusion conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号