首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Co0.8Fe2.2O4 ferrite thin films have been prepared on Si(0 0 1) substrates by the chemical solution deposition. Structural characteristics indicate all films are single phase with spinel structure and the space group and the mean grain size increases from 8 to 30 nm with the increase of annealing temperature. The magnetic properties of Co0.8Fe2.2O4 thin films are highly dependent on annealing temperature. The sample annealed at 800 °C possesses high saturation magnetization, moderate coercivity and squareness ratio, making it a promising application candidate in high-density record and magneto-optical materials.  相似文献   

3.
4.
5.
Vanadium garnets NaPb2Co2V3O12 and NaPb2Ni2V3O12 have been successfully synthesized. The X-ray diffraction experiments indicate that these compounds have the garnet structure of cubic symmetry of space group with the lattice constant of 12.742 Å (NaPb2Co2V3O12) and 12.666 Å (NaPb2Ni2V3O12), respectively. The magnetic susceptibility of NaPb2Ni2V3O12 shows the Curie-Weiss paramagnetic behavior between 4.2 and 350 K. The effective magnetic moment μeff of NaPb2Ni2V3O12 is 3.14 μB due to Ni2+ ion at A-site and the Weiss constant is −3.67 K (antiferromagnetic sign). For NaPb2Co2V3O12, the simple Curie-Weiss law cannot be applicable. The ground state is the spin doublet and the first excited state is spin quartet , according to Tanabe-Sugano energy diagram on the basis of octahedral crystalline symmetry. This excited spin quartet state just a bit higher than ground state influences strongly the complex temperature dependence of magnetic susceptibility for NaPb2Co2V3O12.  相似文献   

6.
We have investigated the hyperfine interaction in Co2SiO4 by inelastic neutron scattering with a high resolution back-scattering neutron spectrometer. The energy spectrum measured from a Co2SiO4 powder sample revealed inelastic peaks at at T=3.5 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at the electronic magnetic ordering temperature . The inelastic peaks have been interpreted to be due to the transition between hyperfine-split nuclear level of the 59Co isotopes with spin . The temperature dependence of the energy of the inelastic peak in Co2SiO4 showed that this energy can be considered to be the order parameter of the antiferromagnetic phase transition. The determined hyperfine splitting in Co2SiO4 deviates from the linear relationship between the ordered electronic magnetic moment and the hyperfine splitting in Co, Co-P amorphous alloys and CoO presumably due to the presence of unquenched orbital moment. These results are very similar to those of CoF2 recently reported by Chatterji and Schneider [7].  相似文献   

7.
8.
9.
10.
11.
Magnetic susceptibility obtained from magnetization measurement (for fields H=0.1 and 1.0 T) of polycrystalline Eu2Ti2O7 shows two distinct features. Firstly, increases on cooling below 300 K and attains a temperature-independent constant value at 68 K (Tmax). Secondly, shows an antiferromagnetic increase below 4.9±0.1 K. The former behavior is explained by crystal field (CF) theory. CF levels and wave functions of ground and excited states are determined accurately from analyses of and earlier reported Mössbauer and optical spectra. Analysis of vs. 1/T curve at low temperatures gives the classical nearest-neighbor exchange interaction Jcl=−0.76 K and a weak dipolar interaction Dnn=0.0056 K. CP of polycrystalline sample of Eu2Ti2O7 and Y2Ti2O7 are measured between 1.8-35 and 1.8-120 K respectively and θD vs. T (K) curves are calculated. At 4 K, θD of Eu2Ti2O7 shows a kink and dCP/dT curve show a maximum. Optical results show energy exchange between Eu3+ ions at intrinsic and extrinsic (defect) sites via super-exchange interaction at low temperature which may account for the observed anomalous behavior of and CP.  相似文献   

12.
High quality epitaxial ZnO films were grown on c-Al2O3 substrates with Cr2O3 buffer layer by plasma-assisted molecular beam epitaxy (P-MBE). The hexagonal crystalline Cr2O3 layer was formed by oxidation of the Cr-metal layer deposited on the c-Al2O3 substrate using oxygen plasma. The epitaxial relationship was determined to be ZnO//Cr2O3//Cr//Al2O3 and ZnO//Cr2O3//[0 0 1]Cr//Al2O3. The Cr2O3 buffer layer was very effective in improving the surface morphology and crystal quality of the ZnO films. The photoluminescence spectrum showed the strong near band-edge emissions with the weak deep-level emission, which implies high optical quality of the ZnO films grown on the Cr2O3 buffer.  相似文献   

13.
14.
15.
16.
By Rietveld refinement of the X-ray diffraction (XRD) data of powdered Na2Al2B2O7 samples aged for over 3 months, we found that Na2Al2B2O7 at room temperature is a mixture of two phases with space group and P63/m, respectively. The structures of the two phases can be refined with identical cell parameters of a=4.80760(11) Å, c=15.2684(5) Å and are composed by [Al2B2O7]2− double layers stacking alternatively with Na+ ions along the c-direction, but differ at in-plane bond orientations of the BO3/AlO4 groups within the double layers: in P63/m phase B-O1/Al-O1 bonds of the two layers are perfectly aligned, whereas in phase they are twisted by 46.4/41.6° around c-axis against each other. It is also found that a freshly prepared sample contains only the phase, but part of the phase will transfer to P63/m phase slowly at room temperature and the transition can be reversed by heating the aged sample above 220 °C.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号