首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are interested in the pointwise behavior of the perturbations of shock waves for viscous conservation laws. It is shown that, besides a translation of the shock waves and of linear and nonlinear diffusion waves of heat and Burgers equations, a perturbation also gives rise to algebraically decaying terms, which measure the coupling of waves of different characteristic families. Our technique is a combination of time-asymptotic expansion, construction of approximate Green functions, and analysis of nonlinear wave interactions. The pointwise estimates yield optimal Lp convergence of the perturbation to the shock and diffusion waves, 1 ≤ p ≤ ∞. The new approach of obtaining pointwise estimates based on the Green functions for the linearized system and the analysis of nonlinear wave interactions is also useful for studying the stability of waves of distinct types and nonclassical shocks. These are being explored elsewhere. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
A multiple-scale perturbation analysis for slowly varying weakly nonlinear dispersive waves predicts that the wave number breaks or folds and becomes triple-valued. This theory has some difficulties, since the wave amplitude becomes infinite. Energy first focuses along a cusped caustic (an envelope of the rays or characteristics). The method of matched asymptotic expansions shows that a thin focusing region with relatively large wave amplitudes, valid near the cusped caustic, is described by the nonlinear Schrödinger equation (NSE). Solutions of the NSE are obtained from an asymptotic expansion of an equivalent linear singular integral equation related to a Riemann-Hilbert problem. In this way connection formulas before and after focusing are derived. We show that a slowly varying nearly monochromatic wave train evolves into a triple-phased slowly varying similarity solution of the NSE. Three weakly nonlinear waves are simultaneously superimposed after focusing, giving meaning to a triple-valued wave number. Nonlinear phase shifts are obtained which reduce to the linear phase shifts previously described by the asymptotic expansion of a Pearcey integral.  相似文献   

3.
A nonlinear Schrödinger equation that contains the time-derivative of the probability density is investigated, which is motivated by the attempt to include the recoil effect of radiation. This equation has the same stationary solutions as its linear counterpart, and these solutions are the eigen-states of the corresponding linear Hamiltonian. The equation leads to the usual continuity equation and thus maintains the normalization of the wave function. For the non-stationary solutions, numerical calculations are carried out for the one-dimensional infinite square-well potential (1D ISWP) and for several time-dependent potentials that tend to the former as time increases. Results show that for various initial states, the wave function always evolves into some eigen-state of the corresponding linear Hamiltonian of the 1D ISWP. For a small time-dependent perturbation potential, solutions present the process similar to the spontaneous transition between stationary states. For a periodical potential with an appropriate frequency, solutions present the process similar to the stimulated transition. This nonlinear Schrödinger equation thus presents the state evolution similar to the wave-function reduction.  相似文献   

4.
This is the second in a two-part series of articles in which we analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation allowing finite time shock formation. In this article we analyze the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave (a situation typically encountered in applications). After presenting some exact solutions of the full system, a multiscale perturbation method is used to resolve several basic wave interactions. The analysis breaks down into two categories: the nonlinear limit and the linear limit, corresponding to the form of the equations when the group velocity to shock speed ratio, denoted by ε, is zero. The former case is an integrable limit in which the model reduces to the cubic nonlinear Schrödinger equation governing the dispersive wave envelope. We focus on the interaction of a “fast” shock wave and a single hump soliton. In the latter case, the ε=0 problem reduces to the linear Schrödinger equation, and the focus is on a fast shock interacting with a dispersive wave whose amplitude is cusped and exponentially decaying. To motivate the time scales and structure of the shock-dispersive wave interactions at lowest orders, we first analyze a simpler system of ordinary differential equations structurally similar to the original system. Then we return to the fully coupled partial differential equations and develop a multiscale asymptotic method to derive the effective leading-order shock equations and the leading-order modulation equations governing the phase and amplitude of the dispersive wave envelope. The leading-order interaction equations admit a fairly complete analysis based on characteristic methods. Conditions are derived in which: (a) the shock passes through the soliton, (b) the shock is completely blocked by the soliton, or (c) the shock reverses direction. In the linear limit, a phenomenon is described in which the dispersive wave induces the formation of a second, transient shock front in the rapidly moving hyperbolic wave. In all cases, we can characterize the long-time dynamics of the shock. The influence of the shock on the dispersive wave is manifested, to leading order, in the generalized frequency of the dispersive wave: the fast-time part of the frequency is the shock wave itself. Hence, the frequency undergoes a sudden jump across the shock layer.In the last section, a sequence of numerical experiments depicting some of the interesting interactions predicted by the analysis is performed on the leading-order shock equations.  相似文献   

5.
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

6.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.

  相似文献   


7.
We consider a class of nonlinear Schrödinger equation in three space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L2) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions with small initial data, converge to a nonlinear bound state. Therefore, the nonlinear bound states are asymptotically stable. The proof hinges on dispersive estimates that we obtain for the time dependent, Hamiltonian, linearized dynamics around a careful chosen one parameter family of bound states that “shadows” the nonlinear evolution of the system. Due to the generality of the methods we develop we expect them to extend to the case of perturbations of large bound states and to other nonlinear dispersive wave type equations.  相似文献   

8.
Motivated by the theory of phase transition dynamics, we consider one-dimensional, nonlinear hyperbolic conservation laws with nonconvex flux-function containing vanishing nonlinear diffusive-dispersive terms. Searching for traveling wave solutions, we establish general results of existence, uniqueness, monotonicity, and asymptotic behavior. In particular, we investigate the properties of the traveling waves in the limits of dominant diffusion, dominant dispersion, and asymptotically small or large shock strength. As the diffusion and dispersion parameters tend to 0, the traveling waves converge to shock wave solutions of the conservation law, which either satisfy the classical Oleinik entropy criterion or are nonclassical undercompressive shocks violating it.  相似文献   

9.
First of all, by using Bernoulli equations, we develop some technical lemmas. Then, we establish the explicit traveling wave solutions of five kinds of nonlinear evolution equations: nonlinear convection diffusion equations (including Burgers equations), nonlinear dispersive wave equations (including Korteweg-de Vries equations), nonlinear dissipative dispersive wave equations (including Ginzburg-Landau equation, Korteweg-de Vries-Burgers equation and Benjamin-Bona-Mahony-Burgers equation), nonlinear hyperbolic equations (including Sine-Gordon equation) and nonlinear reaction diffusion equations (including Belousov-Zhabotinskii system of reaction diffusion equations).  相似文献   

10.
We study travelling wave solutions of a Korteweg–de Vries–Burgers equation with a non-local diffusion term. This model equation arises in the analysis of a shallow water flow by performing formal asymptotic expansions associated to the triple-deck regularisation (which is an extension of classical boundary layer theory). The resulting non-local operator is a fractional derivative of order between 1 and 2. Travelling wave solutions are typically analysed in relation to shock formation in the full shallow water problem. We show rigorously the existence of these waves. In absence of the dispersive term, the existence of travelling waves and their monotonicity was established previously by two of the authors. In contrast, travelling waves of the non-local KdV–Burgers equation are not in general monotone, as is the case for the corresponding classical KdV–Burgers equation. This requires a more complicated existence proof compared to the previous work. Moreover, the travelling wave problem for the classical KdV–Burgers equation is usually analysed via a phase-plane analysis, which is not applicable here due to the presence of the non-local diffusion operator. Instead, we apply fractional calculus results available in the literature and a Lyapunov functional. In addition we discuss the monotonicity of the waves in terms of a control parameter and prove their dynamic stability in case they are monotone.  相似文献   

11.
The propagation of an internal wave train in a stratified shear flow is investigated for a Boussinesq fluid in a horizontal channel. Linear effects are primarily reflected in the dispersion relation for the various modes. The phenomenon of Eckart resonance occurs for more realistic stratification profiles. The evolution of nonlinear internal wave packets is studied through a systematic perturbation analysis. A nonlinear Schrodinger equation for the envelope of the internal wave train is derived. Depending on the relative sign of the dispersive and nonlinear terms, a wave train may disperse or form an envelope soliton. The analysis demonstrates the existence of two types of critical layers: one the ordinary critical point where ū=c, while the other occurs where ū=cg. In order to calculate the coefficients of the nonlinear Schrodinger equation a numerical code has been developed which computes the second-harmonic and induced mean motions. The existence of these envelope solitons and their dependence on environmental conditions are discussed.  相似文献   

12.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic‐elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic‐hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of C1,α flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the C1,α perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is C1,α, provided that the hyperbolic phase is close in C1,α to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is C2,α, the free boundary is C2,α and stable under the steady perturbation. © 2003 Wiley Periodicals Inc.  相似文献   

13.
In this comment we analyze the paper [Abdelhalim Ebaid, S.M. Khaled, New types of exact solutions for nonlinear Schrodinger equation with cubic nonlinearity, J. Comput. Appl. Math. 235 (2011) 1984-1992]. Using the traveling wave, Ebaid and Khaled have found “new types of exact solutions for nonlinear Schrodinger equation with cubic nonlinearity”. We demonstrate that the authors studied the well-known nonlinear ordinary differential equation with the well-known general solution. We illustrate that Ebaid and Khaled have looked for some exact solution for the reduction of the nonlinear Schrodinger equation taking the general solution of the same equation into account.  相似文献   

14.
We consider an initial-boundary value problem for a nonlinear parabolic system. Using perturbation methods, this problem is reduced to one of considering an evolution equation for the long-time asymptotics of the system. This model can be related to the leading order approximation for a spatially inhomogeneous reaction-diffusion system with time-dependent forcing. The evolution equation yields solutions with steady state shocks. We study some of the subtle effects introduced by time-dependent forcing. Most significant among these effects is the creation of “forbidden regions” where stationary shocks cannot form. Results are presented for bi- and tri-stable one-dimensional models as well as multidimensional systems.  相似文献   

15.
We consider a class of nonlinear Schrödinger equations in two space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L2) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions with small initial data, converge to a nonlinear bound state. Therefore, the nonlinear bound states are asymptotically stable. The proof hinges on dispersive estimates that we obtain for the time-dependent, Hamiltonian, linearized dynamics around a carefully chosen one-parameter family of bound states that “shadows” the nonlinear evolution of the system. Due to the generality of the methods we develop we expect them to extend to the case of perturbations of large bound states and to other nonlinear dispersive wave type equations.  相似文献   

16.
The method of bifurcation of planar dynamical systems and method of numerical simulation of differential equations are employed to investigate the modified dispersive water wave equation. We obtain the parameter bifurcation sets that divide the parameter space into different regions which correspond to qualitatively different phase portraits. In different regions, different types of travelling solutions including solitary wave solutions, shock wave solutions and periodic wave solutions are simulated. Furthermore, with a generalized projective Riccati equation method, several new explicit exact solutions are obtained.  相似文献   

17.
We study the propagation of nonlinear waves in a Hall‐magnetohydrodynamic model. An asymptotic method is used to derive the Gardner‐Burgers equation for fast magnetosonic waves; here, the flux function is nonconvex with both quadratic and cubic nonlinearities, and the evolution equation involves both second‐ and third‐order derivatives representing diffusion and dispersion terms, respectively. Effects of Hall parameter are discussed on the evolution of waves and their interaction by solving a pair of Riemann problems both analytically and numerically. It is shown that the Hall parameter is responsible for shock splitting—a phenomenon that is completely absent in ideal magnetohydrodynamic; indeed, the Hall parameter plays a significant role in deciding about the structure of the solution that involves undercompressive shocks and their interaction with refracted waves and the Lax shocks. It is found that increasing Hall parameter means increasing dispersion that triggers the physical mechanism causing speed and strength of an undercompressive shock to increase and the wave‐fan width to decrease; numerical solutions substantiate these features predicted by the analytical solution.  相似文献   

18.
Solutions of the nonlinear Boltzmann equation are constructed up to the first appearance of shocks in the corresponding fluid dynamics. This construction assumes the knowledge of solutions of the Euler equations for compressible gas flow. The Boltzmann solution is found as a truncated Hilbert expansion with a remainder, and the remainder term solves a weakly nonlinear equation which is solved by iteration. The solutions found have special initial values. They should serve as “outer expansions” to which initial layers, boundary layers and shock layers can be matched.  相似文献   

19.
This paper considers the global existence and optimal temporal decay—estimates of solutions to a class of multidimensional nonlinear evolution equations whose dispersive and dissipative terms have the same order p(p > 1). Such a class includes the multidimensional generalized Benjamin—Ono—Burgers equation and the multidimensional generalized Schrodinger—Burgers equations as special examples  相似文献   

20.
The traveling wave solutions of the generalized nonlinear derivative Schrödinger equation and the high-order dispersive nonlinear Schrödinger equation are studied by using the approach of dynamical systems and the theory of bifurcations. With the aid of Maple, all bifurcations and phase portraits in the parametric space are obtained. All possible explicit parametric representations of the bounded traveling wave solutions (solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions) are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号