首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed-ligand Complexes of Rhenium. IX. Reactions on the Nitrido Ligand of [ReN(Me2PhP)(Et2dtc)2]. Synthesis, Characterization, and Structures of [Re(NBCl3)(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2(Et2dtc)] BCl3, GaCl3 and S2Cl2 react with the well-known [ReN(Me2PhP)(Et2dtc)2] by attack of the nucleophilic nitrido ligand. Final products of these reactions are [Re(NBCl3)-(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2], and [Re(NS)Cl(Me2PhP)2Et2dtc)] which have been studied by mass spectrometry, IR spectroscopy and X-ray diffraction. [Re(NBCl3)(Me2PhP)(Et2dtc)2] crystallizes in the triclinic space group P1 , Z = 2, a = 8.151(6), b = 9.935(8), c = 18.67(1) Å; α = 94.42(4), β = 97.09(1), γ = 101.35(4)°. The coordination geometry is a distorted octahedron. The equatorial coordination sphere is occupied by one phosphorus and three sulphur atoms. The fourth sulphur atom is in trans position to the Re?N? B moiety. The almost linear Re?N? B unit has an Re?N? B angle of 170.5(3)° with a Re? N bond length of 1.704(3) Å. The analogous [Re(NGaCl3)(Me2PhP)(Et2dtc)2] crystallizes in P21/c with a = 8.138(3), b = 18.279(2), c = 19.880(6) Å; β = 99.81(2)°; Z = 4. Rhenium has a distorted octahedral environment. The Re? N? Ga bond is slightly bent with an angle of 154.5(4)° and a Re? N bond length of 1.695(6) Å. [Re(NS)Cl(Me2PhP)2(Et2dtc)] crystallizes in the triclinic space group P1 , Z = 4, a = 9.514(2); b = 16.266(5); c = 18.388(3) Å; α = 88.75(2), β = 76.59(2), γ = 85.50(2)° with two crystallographically independent molecules in the asymmetric unit. Rhenium has a distorted octahedral environment with the chloro ligand in trans position to the almost linear thionitrosyl group. The Re?N bond lengths are 1.795(6) and 1.72(1) Å, respectively, and the N?S distances are 1.55(1) and 1.59(1) Å, respectively.  相似文献   

2.
Mixed-Ligand Complexes of Technetiums. XVI Synthesis and Structure of (1,2-Dicyanoethene-1,2-dithiolato)bis(dimethylphenylphosphine)nitridotechnetium(V), [TcN(Me2PhP)2(mnt)] [TcN(Me2PhP)2(mnt)] is formed from [TcNCl2(Me2PhP)3] and one equivalent of the sodium salt of 1,2-dicyanoethene-1,2-dithiolate (Na2mnt). The same reaction yields [TcN(mnt)2]2?, when a large excess of the ligand and long reaction periods are applied. The complex anion can be isolated as tetraalkylammonium or tetraphenylarsonium salts. [TcN(Me2PhP)2(mnt)] crystallizes in the triclinic space group P1 (a = 10.000(5), b = 14.182(6), c = 17.77(1) Å, α = 98.77(3), β = 103.77(3), γ = 104.55(3)°; Z = 4). The coordination sphere is a square pyramid with the sulfur and phosphorus atoms as basal plane. Tc is situated out of this plane by 0.56 Å towards the nitrido ligand.  相似文献   

3.
[Au(Et2dtc)2][TcNCl4] – Synthesis and Structure [Au(Et2dtc)2][TcNCl4] (Et2dtc = N,N‐diethyldithiocarbamate) is formed by the reaction of [Au(CO)Cl] with [TcN(Et2dtc)2] in dichloromethane. The solid state structure of the compound is characterized by a large triclinic unit cell (space group, P1, a = 9.422(2), b = 22.594(5), c = 32.153(7) Å, α = 72.64(1), β = 85.19(1), γ = 86.15(1)°, Z = 12) and shows an unusual arrangement due to long‐range contacts between the technetium atoms and sulfur atoms of the [Au(Et2dtc)2]+ units (3.45–3.56 Å) which assemble two anions and one cation to {[TcNCl4][Au(Et2dtc)2] · [TcNCl4]} moieties.  相似文献   

4.
Mixed-Ligand Complexes of Rhenium IV. The Reaction of [ReNCl2(Me2PhP)3] with Dithiocarbamates. X-Ray Crystal Structures of trans-Chloro-dimethyldithiocarbamato-bis(dimethylphenylphosphine) nitridorhenium(V), [ReN(Cl)(Me2PhP)2(Me2dtc)], and Bis(diethyldithiocarbamato)(dimethylphenylphosphine)nitridorhenium(V), [ReN(Cl)(Me2PhP)(Et2dtc)2] [ReNCl2(Me2PhP)3] reacts with dialkyldithiocarbamates, R2dtc?, under a stepwise ligand exchange. Final products of these reactions are the well-known [ReN(R2dtc)2] bischelates. Intermediatelly, however, complexes of the general formulae [ReN(Cl)(Me2PhP)2(R2dtc)] and [ReN(Me2PhP)(R2dtc)2] can be isolated. Representatives have been structurally characterized. [ReN(Cl)(Me2PhP)2(Me2dtc)] crystallizes monoclinic in the space group P21/c, Z = 4. The dimensions of the unit cell are a = 13.071(3); b = 11.622(1); c = 15.667(3) Å; β = 97.09(1)°. The rhenium atom has a distorted octahedral environment; the Re≡N bond length is 1.71(1) Å. The Re? Cl bond distance is markedly lengthened (2.665(2) Å) as a consequence of the strong trans labilizing influence of the coordinated nitrido ligand. [ReN(Me2PhP)(Et2dtc)2] crystallizes monoclinic in the space group P21/c, Z = 4, a = 17.262(3); b = 14.915(2); c = 9.888(2); β = 76.35(8)°. The equatorial coordination sphere is occupied by one phosphorus atom and three sulphur atoms. One of the dithiocarbamate ligands is coordinated bidentately; the second one with two distinct Re? S bond lengths. The Re? S(4) distance is 2.7983(2) Å which can be discussed as a weak interaction with the metal.  相似文献   

5.
New Trinuclear Rhenium Complexes with Bridging Nitrido Ligands Trinuclear complexes with bridging nitrido ligands between the rhenium atoms are formed when [ReN(Et2dtc)2 · (Me2PhP)] (Et2dtc = N,N‐diethyldithiocarbamate) reacts with TlCl or Pr(O3SCF3)3. [Cl(Me2PhP)2(Et2dtc)Re≡N–Re(N) · Cl2(Me2PhP)–N≡Re(Et2dtc)(Me2PhP)2Cl] and [(Et2dtc)2 · (Me2PhP)Re≡N–Re(N)(Et2dtc)(Me2PhP)–N≡Re(Me2PhP) · (Et2dtc)2]+ contain two almost linear, asymmetric nitrido bridges. Additional, terminal nitrido ligands are located at the middle rhenium atoms.  相似文献   

6.
《Polyhedron》1999,18(6):831-838
Reactions of [ReN(Cl)(Me2PhP)2(HEt2tcb)] (HEt2tcb=N,N-diethylthiocarbamoylbenzamidinate, Me2PhP=dimethylphenylphosphine) with Lewis acidic compounds such as BBr3, (C6F5)3B or gallium(III) chloride yield nitrogen-bridged binuclear complexes with covalent bonds between the nitrido ligand and boron or gallium. The reactions go along with activation of the transition metal centre which can lead to ligand re-arrangements and reactions with solvent molecules.The reaction with BBr3 results in cleavage of the bonds to the chelating ligand. [Re(NBBr3)Br2(Me2PhP)3] was isolated as the only product with a nitrido bridge. The bis-chelate [ReN(HEt2tcb)2] was formed as a side-product.Upon formation of a nitrido bridge to GaCl3 the first co-ordination sphere of rhenium is retained. The co-ordinated thiocarbamoylbenzamidinate, however, undergoes protonation and is bonded as a neutral, bidentate ligand in the product [Re(NGaCl3)Cl(Me2PhP)2(H2Et2tcb)][GaCl4].In [Re{NB(C6F5)3}Cl(Me2PhP)2(HEt2tcb)], which can be obtained in good yield from the reaction of [ReN(Cl)(Me2PhP)2(HEt2tcb)] with (C6F5)3B, the co-ordination environment of the metal remains essentially unchanged.X-ray structural studies on the products suggest that the strong structural trans influence of the terminal nitrido ligand in the starting complex decreases significantly as a consequence of the formation of the N–B/Ga bonds. The rhenium–nitrogen multiple bond distances, however, remain almost unchanged.  相似文献   

7.
[{ReN(Me2PhP)(Et2dtc)Cl}2{ReN(Et2dtc)2}2{SbCl3}2] — a Novel Tetranuclear Rhenium Complex with Asymmetric Nitrido Bridges The reaction of [ReN(Et2dtc)2(Me22hP)] (Me2PhP = dimethylphenylphosphine, Et2dtc = diethyldithiocarbamate) with SbCl3 in dichloromethane results in the formation of [{ReN(Me2PhP)(Et22tc)Cl}2{ReN(Et2dtc)2}2{SbCl3}2]. A {Re≡N‐}4 ring with asymmetric nitrido bridges is stabilised by the co‐ordination of SbCl3 onto the chloro ligands and sulphur atoms of the dithiocarbamates. The compound decomposes upon heating in acetonitrile and the fragments of the tetrameric complex re‐arrange to form [ReN‐(Me2PhP)(Et2dtc)Cl]4 and [ReN(Et2dtc)2]. The multinuclear rhenium compounds have been studied by X‐ray crystallography. The 8‐membered {Re≡N‐}4 ring system in [{ReN(Me2PhP)(Et2dtc)Cl}22ReN(Et2dtc)2}2{SbCl3}2] is almost planar, while that of [ReN(Me2PhP)(Et2dtc)Cl]4 is clearly V‐shaped when viewed down either diagonal Re…Re axis. A dihedral angle of 47.88(2)° has been found between the contributing planes.  相似文献   

8.
[Tc(NBCl2Ph)Cl2(Me2PhP)3] and [Tc(NBH3)Cl2(Me2PhP)3] – the First Technetium Complexes with Nitrido Bridges between Technetium and Boron [TcNCl2(Me2PhP)3] reacts with BCl2Ph or BH3 · THF at low temperatures under formation of complexes containing a nitrido bridge between technetium and boron. The compounds are instable and decompose at room temperature under cleavage of the N–B bonds. The pale‐purple [Tc(NBCl2Ph)Cl2(Me2PhP)3] crystallizes in the orthorhombic space group Fdd2. The Tc≡N bond is only slightly lengthened by the formation of the N–B bond of 1.564(4) Å. However, a considerable lengthening of the Tc–Cl bond in trans position to the nitrido ligand is observed which can be attributed to an decreasing of the structural trans influence of the nitrido moiety. A similar structural feature can be found in [Tc(NBH3)Cl2(Me2PhP)3] which is the first structurally characterized transition metal complex containing a nitrido bridge to unsubstituted borane.  相似文献   

9.
Mixed-ligand Complexes of Rhenium. VI. Synthesis and X-Ray Structures of the Rhenium Thionitrosyl Complexes mer-[Re(NS)Cl2(Me2PhP)3] · CH2Cl2 and trans-[Re(NS)Cl3(Me2PhP)2] mer-Dichlorotris(dimethylphenylphosphine)(thionitrosyl)rhenium(I), mer-[Re(NS)Cl2(Me2PhP)3], and trans-Trichlorobis(dimethylphenylphosphine)(thionitrosyl)rhenium(II), trans-[Re(NS)Cl3(Me2PhP)2], are formed during the reaction of rhenium(V) mixed-ligand complexes of the general formula [ReN(Cl)(Me2PhP)2(R2tcb)] with disulphur dichloride (HR2tcb = N-(N,N-dialkylthiocarbamoyl)benzamidine). The chelating ligands are substituted during the reaction. mer-[Re(NS)Cl2(Me2PhP)3] crystallizes monoclinic in the space group P21/n. The dimensions of the unit cell are a = 8.854(2); b = 31.295(3); c = 11.981(3) Å; β = 108.14(1)°; Z = 4. A final R value of 0.033 was achieved on the basis of 5 387 reflections with I ≥ 3σ(I). The rhenium atom is coordinated in a distorted octahedral environment. The Me2PhP ligands are arranged meridionally cis to the linear thionitrosyl group. trans-[Re(NS)Cl3(Me2PhP)2] crystallizes in the monoclinic space group C2/c with an unit cell of the dimensions a = 33.320(9); b = 8.446(1); c = 17.28(5) Å; β = 116.09(1)°, Z = 8. The R value converged at 0.026 on the basis of 5 460 independent reflections. The metal is octahedrally coordinated with the phosphine ligands in trans position to each other. The angle Re? N? S is 175.7(3)°.  相似文献   

10.
Reactions of [Re(NPh)Cl3(PPh3)2] with N‐[(N′,N′‐dialkylamino)(thiocarbonyl)]benzamidines (H2R2tcb) (R2 = Et2, (CH2)2O(CH2)2) in methanol give mono‐chelates of the composition [Re(NPh)Cl2(PPh3)(HR2tcb)] as the sole products independent of the amount of the added H2R2tcb. Addition of a supporting base such as NEt3 results in hydrolysis of the Re=NPh bonds and partial hydrolysis of the thiocarbamoylbenzamidines. Orange‐brown, cationic oxorhenium(V) compounds of the formula [ReO(HR2tcb)2]Cl were isolated from such reaction mixtures in good yields, and the formation of small amount of the unusual sulfido/persulfido‐bridged ReV dimer [{ReO(HEt2tcb)}2(μ‐S)(μ‐S2)] give evidence for a considerable degree of ligand decomposition under such conditions. The products have been characterized by spectroscopic methods and X‐ray crystallography. Acidification of orange‐brown solutions of the five‐coordinate ReV oxo complex [ReO(HEt2tcb)2]Cl causes an immediate change of the color and deep blue crystals of the neutral, six‐coordinate [ReOCl(HEt2tcb)2] can be isolated from the resulting mixture. Alternatively, the product can be prepared by a ligand‐exchange protocol starting from (NBu4)[ReOCl4] and H2Et2tcb. The pH‐dependent isomerization between [ReO(HEt2tcb)2]Cl and [ReOCl(HEt2tcb)2] is reversible.  相似文献   

11.
Mixed-ligand Complexes of Rhenium. V. The Formation of Nitrene Complexes by Condensation of Acetone at Coordinated Nitrido Ligands. Syntheses and Structures of fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] Complexes (X = Cl, Br) The reaction of rhenium(V)-mixed-ligand complexes of the general formula [ReN(Cl)(Me2PhP)2(R2tcb)] (HR2tcb = N? (N,N-dialkylthiocarbamoyl)benzamidine) with HCl or HBr in acetone initializes a condensation of the solvent and results in nitrene-like compounds as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the condensed acetone. The chelate ligands are removed during this reaction and complexes of the type fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] (X = Cl, Br) are formed. fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] crystallizes triclinic in the space group P1, a = 8.575(4); b = 9.088(3); c = 18.389(9) Å; α = 75.67(3)°, β = 85.30(3)°, γ = 70.58(4)°; Z = 2. A final R value of 0.031 was obtained on the basis of 6011 independent reflections with I ≥ 2σ(I). Rhenium is coordinated in a distorted octahedral environment with the three chloro ligands in facial positions. The rhenium-nitrogen bond (1,68(1) Å) is only slightly longer than typical Re? N bonding distances in nitrido complexes. fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] is isomorphous with the chloro complex. Triclinic cell with a = 8.625(4); b = 9.198(3); c = 18.581(5) Å; α = 75.62(3)°, β = 85.40(3)°, γ = 70.91(3)°; Z = 2. The R value converged at 0.049 on the basis of 3644 independent reflections with I ≥ 2σ(I). fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] as well as fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] crystallizes in the noncentrosymmetric space group P1.  相似文献   

12.
Nitrido bridges between technetium and boron were formed during reactions of [TcN(PMe2Ph)(Et2dtc)2] (Et2dtc? = diethyldithiocarbamate) and BH3 or BPhCl2 at low temperatures. X‐Ray structure determinations show that the products contain almost linear Tc–N–B bonds with Tc–N distances which are only slightly lengthened with respect to the triple bonds in the precursor molecule. However, a significant lengthening of the Tc–S bond trans to the nitrido ligand is detected by the decrease of the structural trans influence of “N3?”N. The compounds are instable and decompose at room temperature under cleavage of the N–B bonds. A reaction between [TcNCl2(PPh3)2] and BCl3 does not yield a product with a nitrido bridge. Prolonged heating in dichloromethane results in decomposition of the technetium complex and the formation of (HPPh3)2[TcCl6]. Hydrogen bonds are established between the complex anion and each two counter ions.  相似文献   

13.
The Reaction of Dichlorophenylborane with Nitrido Complexes of Rhenium BCl2Ph reacts with terminal nitrido ligands of rhenium complexes under formation of a nitrogen bridge between the transition metal and boron. Structural studies on [Re(NBCl2Ph)Cl2(Ph3P)2], [Re(NBCl2Ph)Cl2(Me2PhP)3], [Re(NBCl2Ph)Cl(Me2PhP)2(Et2dtc)] and [Re(NBCl2Ph)(Me2PhP)(Et2dtc)2] (Et2dtc = N,N′‐diethyldithiocarbamate) demonstrate that the rhenium‐nitrogen bond is only slightly lengthened upon the formation of the nitrido bridge whereas a significant decrease of the structural trans influence of the nitrido ligand is observed. [Re(NBCl2Ph)Cl4(Y)] (Y = Cl or solvent) complexes are formed during the reaction of [ReNCl4] with BCl2Ph. The rhenium(VI) compounds (d1configuration) can easily be detected by EPR spectroscopy. The formation of {Re(NBCl2Ph)} complexes with mixed Cl/Br (or NCS) coordination spheres is evident when the reactions start from [ReNBr4] or [ReN(NCS)5]2– which can be derived from the EPR spectra of the reaction mixtures.  相似文献   

14.
Syntheses and Structures of [ReNBr2(Me2PhP)3] and (Me2PhPH)[ fac ‐Re(NBBr3)Br3(Me2PhP)2] [ReNBr2(Me2PhP)3] ( 1 ) has been prepared by the reaction of [ReNCl2(Me2PhP)3] with Me3SiBr in dichloromethane. The bromo complex reacts with BBr3 under formation of [Re(NBBr3)Br2(Me2PhP)3] ( 2 ) or (Me2PhPH)[fac‐Re(NBBr3)Br3(Me2PhP)2] ( 3 ) depending on the experimental conditions. The formation of the nitrido bridge leads to a significant decrease of the structural trans influence of the nitrido ligand which is evident by the shortening of the Re‐(trans)Br bond from 2.795(1) Å in [ReNBr2(Me2PhP)3] to 2.620(1) Å in [fac‐Re(NBBr3)Br3(Me2PhP)2] and 2.598(1) Å in [Re(NBBr3)Br2(Me2PhP)3], respectively.  相似文献   

15.
Preparation, Structures, and EPR Spectra of the Rhenium(II) Thionitrosyl Complexes trans -[Re(NS)Cl3(MePh2P)2] and trans -[Re(NS)Br3(Me2PhP)2] The paramagnetic rhenium(II) thionitrosyl compounds trans-[Re(NS)Cl3(MePh2P)2] and trans-[Re(NS)Br3(Me2PhP)2] are characterized by crystal structure diffraction and EPR spectroscopy. Trans-[Re(NS)Cl3(MePh2P)2] is formed during the reduction of (a) [ReNCl2(MePh2P)3] with disulphur dichloride or (b) of mer-[ReCl3(MePh2P)3] with trithiazyl chloride. Trans-[Re(NS)Br3(Me2PhP)2] is the final product of the ligand exchange reaction of mer-[Re(NS)Cl2(Me2PhP)3] with bromine whereby the metal occurred to be simultaneusly oxidized. The crystal structure analyses show for trans-[Re(NS)Cl3(MePh2P)2] (monoclinic, C2/c, a = 13.831(3) Å, b = 13.970(1) Å, c = 14.682(2) Å, β = 95.33(1), Z = 4) and trans-[Re(NS)Br3(Me2PhP)2] (monoclinic, C2/c, a = 33.292(5) Å, b = 8.697(1) Å, c = 17.495(3) Å, β = 115.65(1), Z = 8) linear co-ordinated NS ligands (Re–N–S-angles 180° and 174.8°). The metal atom is octahedrally co-ordinated with the phosphine ligands in trans position to each other. X-band and Q-band EPR spectra of the rhenium(II) thionitrosyl complexes (5 d5 “low-spin” configuration, S = 1/2) are detected in the temperature range 295 ≥ T ≥ 130 K. They are characterized by well resolved 185,187Re hyperfine patterns. The hyperfine parameters are used to get information about the spin-density distribution of the unpaired electron in the complexes under study.  相似文献   

16.
Nitridorhenium(V) Complexes with Dimercapto Succinic Acid Dimethylester. Preparation, Characterization, and Crystal Structure of [Re{NC(CH3)2PPhMe2}(DMSMe2)2] Reaction of [ReNCl2(Me2PhP)3] 1 with two equivalents of dimercaptosuccinic acid dimethylester (DMSMe2) results in the formation of a neutral, diamagnetic rhenium(V)‐DMSMe2 complex with a phenyldimethylphosphinoisopropyl group at the nitrido ligand as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the solvent molecule. The formed complex 2 of the composition [Re{NC(CH3)2(Me2PhP)}(DMSMe2)2] crystallizes in the triclinic space group P 1, a = 12.334(7), b = 12.412(7), c = 12.414(8) Å; α = 60.14(3)°, β = 67.98(3)°, γ = 80.63(6)°; Z = 2. Rhenium is located in a square‐pyramidal configuration of the donor atoms. The two meso‐DMSMe2 ligands are in a syn‐endo conformation. The rhenium‐nitrogen bond (1.697(12) Å) is only slightly longer than typical Re–N bonding distances in nitrido complexes and comparable with other Re–N–C bonding distances. The addition of a solvent molecule is observed in acetone ( 2 ) as well as in methylethylketone ( 3 ). Moreover, a reaction of the nitrido group with the condensation product of ketone is found by mass spectrometry ([ReN{C(CH3)(C2H5)CH2C(O)C2H5(Me2PhP)}(DMSMe2)2] 4 ).  相似文献   

17.
The neutral technetium(V) phosphoraneimine complex [TcNCl2(Ph2PNH)2] is formed when (Bu4N)[TcOCl4] reacts with Me3SiNPPh3 in dichloromethane. Distances of 2.078(4) and 2.102(4) Å have been found between Tc and the neutral triphenylphosphoraneimine ligands. The Tc‐N‐P angles are 133.7(3) and 134.8(3)°. The terminal nitrido ligand is formed by decomposition of an additional molecule of Me3SiNPPh3. The protons which are used for the protonation of the organic ligands are released during the decomposition of CH2Cl2. The same reaction yields the [TcNCl4] anion when it is performed in acetonitrile.  相似文献   

18.
Synthesis, EPR and X-Ray Structure of mer-Trichloro(2,2′-bipyridine)nitridotechnetium(VI) — a new Technetium(VI) Nitrido Complex mer-Trichloro(2,2′-bipyridine)nitridotechnetium(VI) has been prepared by the reaction of (NBu4)[TcNCl4] with 2,2′-bipyridine in acetonitrile, whereas the same procedure gives in methanol the technetium(V) cation [TcNCl(bipy)2]+. The EPR spectrum of [TcNCl3(bipy)] suggests a meridional coordination of the three chloro ligands. [TcNCl3(bipy)] crystallizes monoclinic in the space group P21/n; a = 8.572(1), b = 15.462(1), c = 10.110(1) Å, β = 104.21(1)°, Z = 4. The R value converged at 0.034 on the basis of 3 040 reflections. The technetium atom is distorted octahedrally coordinated with the chloro ligands meridionally cis with respect to the nitrido nitrogen. The Tc? N(1) bond length is 1.669(4) Å, and the Tc? N(3) bond (2.371(4) Å) is significantly lengthened due to the structural trans labilizing influence of the “N3?” ligand.  相似文献   

19.
trans ‐[Re(NH3)I2(Me2PhP)3]I3 – Formation of an Ammine Ligand from a Nitrido Ligand The reaction of [ReNCl2(Me2PhP)3] (Me2PhP = dimethylphenylphosphine) with Me3SiI in dichloromethane results in the formation of trans‐[Re(NH3)I2(Me2PhP)3]I3. The unusual protonation of a nitrido ligand is due to the partial decomposition of the solvent.  相似文献   

20.
A series of mixed-ligand copper(II) chelates containing the anion of 2-hydroxyaryloxime(oxime) and N,N-disubstituted dithiocarbamate(dtc), [Cu(dtc)(oxime)], was prepared and characterised. The spectra (IR, ESR, electronic excitation) indicate that the CuNOS2 chromophore attains square planar geometry. The ESR observables suggest appreciable covalency. In the case of [Cu(Et2dtc)(oxime)] chelates, however, the observed data suggest distortion from square planar arrangement to a square pyramidal, indicative of a possible dimerism. In addition, the structure of the trans-bis[propanone, 1-(2-hydroxyphenyl)-oximato]copper(II), Cu(C9H10NO2)2 was determined by X-ray diffraction (monoclinic, space group P21/n, a = 12.072(7) Å, b = 5.204(2) Å, c = 13.571(6) Å, β = 103.72(1)°, Z = 2). The molecule consists of discrete Cu(ppox)2 monomeric units, where the Cu atom is in the equatorial plane bonded to two nitrogen atoms and two oxygen at distances of 1.949(2) and 1.882(2) Å, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号