首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A novel tricyclic dipeptide template, formally derived by coupling (2S,4S)-4-aminoproline (Pro(NH2)) and (S)-2-(carboxymethyl)proline (Pro(CH2COOH)) as a diketopiperazine, has been synthesized in a form suitable for solid-phase peptide synthesis using Fmoc chemistry. This template was incorporated into the cyclic molecule cyclo(-Ala1-Asn2-Pro3-Asn4-Ala5-Ala6-Temp-) (Temp = template), whose conformation in H2O was studied by NMR methods. Average solution structures derived by restrained simulated annealing point to a highly populated βI-turn within the Asn-Pro-Asn-Ala motif and also indicate which conformations are likely to be preferred by the template.  相似文献   

2.
A tricyclic diketopiperazine, formally derived by coupling (2S,4S)-4-aminoproline (Pro(NH2)) and (2S,4R)-4-(carboxymethyl)proline (Pro(CH2COOH)), is synthesized starting from readily available (2S,4R)-4-hydroxyproline. The resulting tricyclic template has carboxy and amino groups to which a peptide chain may be attached. The Fmoc-protected template 5 is incorporated into the cyclic molecule cyclo(-Ala1-Asn2-Pro3-Asn4-Ala5-) ( 6 ) where Pro(NH2)7 = Pro(CH2COOH)8 represents the template, using solid-phase peptide synthesis with cyclization in solution. The molecule is shown by NMR and dynamic simulated annealing methods to adopt a preferred conformation in aqueous solution, which includes an extended backbone at the residues Asn2-Pro3-Asn4, and a type-Iβ-turn at . These studies show that this novel template may be used in the synthesis of cyclic peptide and protein mimetics having defined secondary structure in aqueous environments.  相似文献   

3.
An XRD analysis is used to study the single crystal of [Pd(NH3)4][Rh(NH3)(NO2)5] double complex salt at T = 150(2) K. Crystallographic characteristics are as follows: a = 7.6458(5) ?, b = 9.8813(6) ?, c = 9.5788(7) ?, β = 109.469(2)°, V = 682.30(8) ?3, P21/m space group, Z = 2, d x = 2.553 g/cm3. The geometry of the complex [Rh(NH3)(NO2)5]2− anion is described for the first time: Rh-N(NO2) distances are 2.020(4)–2.060(3) ?, Rh-N(NH3) 2.074(4) ?, N(NO2)-Rh-N(NH3) trans-angle is 178.8(2)°.  相似文献   

4.
Intramolecular Antiferromagnetism in [Cr2(μ-NH2)3(NH3)6]I3 The magnetism of [Cr2(μ-NH2)3(NH3)6]I3 which consists of binuclear cations with NH2?-bridged face-sharing octahedral coordination polyhedra and a metal-metal separation of 264.9 pm can be explained by antiferromagnetically exchange-coupled CrIII-3d3 pairs. The magnetochemical analysis in the temperature range 5 K – 295 K on the basis of the isotropic Heisenberg model (spin Hamiltonian ? = ?2 J?1 · ?2) leads to the parameter value J = ?98(3) cm?1. Compared to the exchange coupling in corresponding binuclear chromium compounds with OH? bridges and identical metal-metal separation the strength of the coupling is significantly enhanced (JNH2/JOH ≈? 1.6).  相似文献   

5.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

6.
Synthesis and Characterization of [Zn{Si(NMe2)2(NHCMe3)(NCMe3)}(μ‐NC5H4)]2, a Molecular Single Source Precursor for ZnSiN2 For an application as single source precursor for ZnSiN2 the siladiazazinca cyclo butane [Zn{Si(NMe2)2(NHCMe3)(NCMe3)}(μ‐NC5H4)]2has been synthesised for the first time from Si(NMe2)2(NLi t‐Butyl)2 and ZnCl2(NC5H5)2. It has been characterized by single crystal structure analysis (P1, a = 870.5(3) pm, b = 903.8(3) pm, c = 1530.6(4) pm, α = 96.982(5)°, β = 106.501(5)°, γ = 104.729(5)°). The CP‐MAS‐NMR data for the nuclei 13C, 15N and 29Si are reported. ZnSiN2 was prepared by thermal decomposition of the precursor molecule and characterized by elemental analysis, EDX, IR spectroscopy and thermal analysis. The crystal structure was determined (X‐ray powder diffraction data, profile matching: P63mc, a = 315.33(1) pm, c = 508.07(2) pm, RB = 4.87). The thermal behaviour of the precursor molecule, the preparation of polymers by linking with NH3 and the decomposition of the polymers in an argon or NH3 stream were investigated.  相似文献   

7.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

8.
Ammonolysis Reaction of (NH4)2GeF6. Synthesis and Structure of NH4[Ge(NH3)F5] (NH4)2GeF6 reacts with ammonia to yield NH4[Ge(NH3)F5] at 280°C. The reaction path was elucidated by in situ time and temperature resolved X-ray powder diffraction. NH4[Ge(NH3)F5] crystallizes isostructurally to NH4[Si(NH3)F5] in the tetragonal space group P4/n (No. 85) with lattice constants a = 619.41(1) pm and c = 724.70(1) pm. The germanium atom is coordinated by five fluorine atoms and the nitrogen atom of the ammonia molecule. The ammonium cation is located on the Wyckoff position (2 a) in P4/n. The crystal structure is stabilized by extensive hydrogen bonding.  相似文献   

9.
Polynuclear Cobalt Complexes. II. Preparation and Structure of [(tren) (NH3)Co(O2)Co(NH3) (tren)](SCN)4 · 2H2O The title compound is obtained on oxygenation of [Co(tren)(H2O)2]2+ in 6M aqueous ammonia or by ligand exchange starting from [(NH3)5Co(O2)Co(NH3)5]-(NO3)4. An X-ray structure determination was made. The substance forms monoclinic crystals, space group P21/c, lattice constants a=10,135, b=8,473, c=19,484 Å, β=108,58°, with two formula units in the cell. The final R is 0,066. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar; the Co? O? O angle is 111,5°. The tertiary nitrogen atoms of both chelate groups are cis to the O2 bridge, as found in doubly bridged [(tren)Co(O2,OH)Co(tren)](ClO4)3 · 3H2O. On acidification in solution, the singly bridged cation [(tren) (NH3)CoO2Co(NH3)(tren)]4+ (a) loses the bound O2 completely. But unlike the doubly bridged cation b , the rate of dissociation of a is independent of pH (Fig. 5). At higher pH (8–10) bridging a→b (Fig. 2) occurs. Both reactions must have the same rate determining step, the first order rate constants being of the order of 2 · 10?3 s?1 (25°, 0,35M KCl).  相似文献   

10.
The crystal structures of double complex salts [M(NH3)5Br][AuBr4]2·H2O (M = Ir, Rh) are determined by single crystal XRD. The compounds crystallize in the triclinic system, P-1 space group, Z = 4. Crystallographic characteristics: [Ir(NH3)5Br][AuBr4]2·H2O: a = 8.2982(3) ?, b = 15.3045(4) ?, c = 17.4378(6) ?, α = 73.064(1)°, β = 88.938(1)°, γ = 86.221(1)°, V = 2113.95(12) ?3, d x = 4.419 g/cm3, R = 0.0469; [Rh(NH3)5Br][AuBr4]2·H2O: a = 8.2855(2) ?, b = 15.2881(3) ?, c = 17.4053(4) ?, α = 73.015(1)°, β = 88.913(1)°, γ = 86.267(1)°, V = 2104.08(8) ?3, d x = 4.165 g/sm3, R = 0.0480. The crystal structure of [Ir(NH3)5Br]Br2 is determined. The compound crystallizes in the orthorhombic system, Pnma space group, Z = 4. Crystallographic characteristics: a = 13.8521(3) ?, b = 10.8570(2) ?, c = 6.9908(1) ?, V = 1049.31(3) ?3, d x = 3.273 g/cm3, R = 0.0127.  相似文献   

11.
The rhenium cyano-bridged cluster complex with a composition of β-[{Ni(NH3)5}2{Re6Te8(CN)6}]−4H2O is obtained and structurally characterized. The compound pound crystallizes in the P $ P\bar 1 $ P\bar 1 triclinic space group with the unit cell parameters: a = 9.997(2) ?, b = 10.423(2) ?, c = 11.714(2) ?, α = 100.92(3)°, β = 111.87(3)°, γ = 98.05(3)°, V = 1082.1(4) ?3, Z = 1, d calc = 4.072 g/cm3. The rhenium atoms of the {Re6Te8} cluster core are coordinated by CN ligands to form the [Re6Te8(CN)6]4− cluster; two nitrogen atoms of CN ligands trans-positioned with respect to each other are coordinated to Ni atoms in the {Ni(NH3)5}2+ fragments to form the molecular complexes of [{Ni(NH3)5}2}Re6Te8(CN)6}]. The crystal structure is the H-bonded packing of these molecular complexes and crystallization water molecules.  相似文献   

12.
The Structure-directing Influence of α, ω-Alkanediammonium Ions on the Formation of Cyanocuprates(I) The alkane-1, n-diammonium-hexacyanotetracuprates(I) (n = 2 - 4) [NH3(CH2)2NH3][Cu4(CN)6]·2H2O ( 1 ), [NH3(CH2)3NH3][Cu4(CN)6]·H2O ( 2 ) and [NH3(CH2)4NH3][Cu4(CN)6]·2H2O ( 3 ) and the pentane-1, 5-diammonium-tetradecacyanooctacuprate(I) [NH3(CH2)5NH3]3[Cu8(CN)14]·3H2O ( 4 ) were obtained by hydrothermal reaction of ethane-1, 2-diamine, propane-1, 3-diamine, butane-1, 4-diamine and pentane-1, 5-diamine with CuCN, NaCN and formic acid. In the crystal structures of compounds 1 - 3 anionic layers of connected (CuCN)6-rings which vary in conformation are piled up containing rigid all-anti α, ω-alkanediammonium ions as spacers. The dications and water molecules are linked to chains by hydrogen bridges, penetrating the anionic layers in a needle-like fashion. In contrast the deformable dications [NH3(CH2)5NH3]2+ in 4 are integrated in cavities of a three-dimensional cyanocuprate(I). Crystal structure data: 1 , monoclinic, P21/c, a = 6.982(3) Å, b = 8.579(4) Å, c = 13.054(6) Å, β = 92.806(10)°, V = 780.9(6) Å3, Z = 2, dc = 2.145 gcm-1, R1 = 0.094; 2 , orthorhombic, C2221, a = 8.715(2) Å, b = 14.764(3) Å, c = 12.411(2) Å, V = 1596.7(5) Å3, Z = 4, dc = 2.098 gcm-1, R1 = 0.026; 3 , orthorhombic, Pnn2, a = 7.276(2) Å, b = 8.612(2) Å, c = 14.731(3) Å, V = 923.1(3) Å3, Z = 2, dc = 1.916 gcm-1, R1 = 0.036; 4 , triclinic, P1, a = 8.113(5) Å, b = 11.068(5) Å, c = 13.689(5) Å, α = 91.270(5)°, β = 99.718(5)°, γ = 103.994(5)°, V = 1173.1(10) Å3, Z = 1, dc = 1.746 gcm-1, R1 = 0.057.  相似文献   

13.
Reported herein is a study of the unusual 3′–3′ 1,4‐GG interstrand cross‐link (IXL) formation in duplex DNA by a series of polynuclear platinum anticancer complexes. To examine the effect of possible preassociation through charge and hydrogen‐bonding effects the closely related compounds [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464, 1 ), [{trans‐PtCl(NH3)2}2(μ‐NH2(CH2)6NH2)]2+ (BBR3005, 2 ), [{trans‐PtCl(NH3)2}2(μ‐H2N(CH2)3NH2(CH2)4)]3+ (BBR3571, 3 ) and [{trans‐PtCl(NH3)2}2{μ‐H2N(CH2)3‐N(COCF3)(CH2)4}]2+ (BBR3571‐COCF3, 4 ) were studied. Two different molecular biology approaches were used to investigate the effect of DNA template upon IXL formation in synthetic 20‐base‐pair duplexes. In the “hybridisation directed” method the monofunctionally adducted top strands were hybridised with their complementary 5′‐end labelled strands; after 24 h the efficiency of interstrand cross‐linking in the 5′–5′ direction was slightly higher than in the 3′–3′ direction. The second method involved “postsynthetic modification” of the intact duplex; significantly less cross‐linking was observed, but again a slight preference for the 5′–5′ duplex was present. 2D [1H, 15N] HSQC NMR spectroscopy studies of the reaction of [15N]‐ 1 with the sequence 5′‐d{TATACATGTATA}2 allowed direct comparison of the stepwise formation of the 3′–3′ IXL with the previously studied 5′–5′ IXL on the analogous sequence 5′‐d(ATATGTACATAT)2. Whereas the preassociation and aquation steps were similar, differences were evident at the monofunctional binding step. The reaction did not yield a single distinct 3′–3′ 1,4‐GG IXL, but numerous cross‐linked adducts formed. Similar results were found for the reaction with the dinuclear [15N]‐ 2 . Molecular dynamics simulations for the 3′–3′ IXLs formed by both 1 and 2 showed a highly distorted structure with evident fraying of the end base pairs and considerable widening of the minor groove.  相似文献   

14.
Rose bengal-sensitized photooxygenation of 4-propyl-4-octene ( 1 ) in MeOH/Me2CHOH 1:1 (v/v) and MeOH/H2O 95:5 followed by reduction gave (E)-4-propyl-5-octen-4-ol ( 4 ), its (Z)-isomer 5 , (E)-5-propyl-5-octen-4-ol ( 6 ), and its (Z)-isomer 7 . Analogously, (E)-4-propyl[1,1,1-2H3]oct-4-ene ( 2 ) gave (E)-4-propyl[1,1,1-2H3]oct-5-en-4-ol ( 14 ), its (Z)-isomer 15 , (E)-5-[3′,3′,3′-2H3]propyl-5-octen-4-ol ( 16 ), its (Z)-isomer 17 , and the corresponding [8,8,8-2H3]-isomers 18 and 19 (see Scheme 1). The proportions of 4–7 were carefully determined by GC between 10% and 85% conversion of 1 and were constant within this range. The labeled substrate 2 was photooxygenated in two high-conversion experiments, and after reduction, the ratios 16/18 and 17/19 were determined by NMR. Isotope effects in 2 were neglected and the proportions of corresponding products from 1 and 2 assumed to be similar (% 4 ≈? % 14 ; % 5 ≈? % 15 ; % 6 ≈? % ( 16 + 18 ): % 7 ≈? % ( 17 + 19 )). Combination of these proportions with the ratios 16/18 and 17/19 led to an estimate of the proportions of hydroperoxides formed from 2 . Accordingly, singlet oxygen ene additions at the disubstituted side of 2 are preferred (ca. 90%). The previously studied trisubstituted olefins 20–25 exhibited the same preference, but had both CH3 and higher alkyl substituents on the double bond. In these substrates, CH3 groups syn to the lone alkyl or CH3 group appear to be more reactive than CH2 groups at that site beyond a statistical bias.  相似文献   

15.
This paper estimates some thermochemical (in kcal mol–1) and detonation parameters for the ionic liquid, [emim][ClO4] and its associated solid in view of its investigation as an energetic material. The thermochemical values estimated, employing CBS‐4M computational methodology and volume‐based thermodynamics (VBT) include: lattice energy, UPOT([emim][ClO4]) ≈? 123 ± 16 kcal · mol–1; enthalpy of formation of the gaseous cation, ΔfH°([emim]+, g) = 144.2 kcal · mol–1 and anion, ΔfH°([ClO4], g) = –66.1 kcal · mol–1; the enthalpy of formation of the solid salt, ΔfH°([emim][ClO4],s) ≈? –55 ± 16 kcal · mol–1 and for the associated ionic liquid, ΔfHo([emim][ClO4],l) = –52 ± 16 kcal · mol–1 as well as the corresponding Gibbs energy terms: ΔfG°([emim][ClO4],s) ≈? +29 ± 16 kcal · mol–1 and ΔfGo([emim][ClO4],l) = +24 ± 16 kcal · mol–1 and the associated standard absolute entropies, of the solid [emim][ClO4], S°298([emim][ClO4],s) = 83 ± 4 cal · K–1 · mol–1. The following combustion and detonation parameters are assigned to [emim][ClO4] in its (ionic) liquid form: specific impulse (Isp) = 228 s (monopropellant), detonation velocity (VoD) = 5466 m · s–1, detonation pressure (pC–J) = 99 kbar, explosion temperature (Tex) = 2842 K.  相似文献   

16.
The Fmoc‐protected lactams 3 and 4 were used to prepare cyclo(Arg‐Gly‐Asp‐lactam) 1 and cyclo(Arg‐Gly‐Asp‐Phe‐lactam) 2 , which contain the Arg‐Gly‐Asp (RGD) recognition motif. Their solid‐phase synthesis, conformational analysis, and binding to purified αVβ3 and αVβ5 integrins are reported. Compound 1 was found to act as an active and selective inhibitor of the αVβ5 integrin.  相似文献   

17.
Abstract

α-Chlorotoluene (1) reacts with elemental sulfur in liquid ammonia affording dibenzyl disulfide (2), dibenzyl trisulfide (3), dibenzyl tetrasulfide (4), dibenzyl pentasulfide (5) and benzylidene benzylimide (6) at a low temperature such as 20°C. This reaction is presumed to be initiated by the nucleophilic attack of ammonium thioaminohydroxylate, “H2NS-NH4 +,” or dithioaminohydroxylate, “H2NSS-NH4,” formed upon treating elemental sulfur in liquid ammonia, on α-chlorotoluene (1). Benzylidene benzylimide (6) is presumed to be formed from benzylamine, which can be formed by treatment of α-chlorotoluene (1) with ammonia.  相似文献   

18.
Heteronuclear Coordination Compounds with Metal—Metal Bonds. IX. Amine Copper(I) Carbonyl Metalates with Cobalt, Iron, or Manganese Colourless crystals of the carbonyl copper complex [(NH3)3(CO)Cu][Co(CO)4] ( 1 a ) are formed in the reaction of [Cu(NH3)4]Cl and Na[Co(CO)4] (T < ? 8°C, pCO = 1 bar); above ?5°C and under N2-atmosphere 1 a converts to [(NH3)2CuCo(CO)4] ( C ), which serves as a starting material for the synthesis of new copper cobaltates: the amines N-amino piperidine, N,N-dimethyl ethylenediamine (dmed) and N-benzyl N,N′-dimethyl ethylenediamine (bn-dmed) replace NH3 to form [(C5H10N? NH2)3CuCo(CO)4] ( 1 b ), [(dmed)CuCo(CO)4] ( 1 c ), [(bn-dmed)CuCo(CO)4] ( 1 d ) the Cu? Co-bond remaining intact. [(NH3)2CuFe(CO)3NO] ( 2 a ) is isosteric with C ; it is synthesized from [Cu(NH3)4]Cl and Na[Fe(CO)3NO] in aqueous solution; 2 a reacts with N,N,N′,N′-tetramethyl ethylenediamine (tmed) to form [(tmed)(NH3)CuFe(CO)3NO] ( 2b ). The [Mn(CO)5]? ion reacts with ammine copper ions to form the tetranuclear cluster [{(NH3)CuMn(CO)5}2] ( 3 ). All new compounds have been investigated by X-ray structure analysis.  相似文献   

19.
A solution of sodium in liquid ammonia reacts with Sb2S3 to form large colorless crystals of the composition Na3SbS3⋅10 NH3. The trigonal‐pyramidal SbS33− anion is ion‐paired with three Na+ counter ions, the coordination spheres of which are completed by eight ammine ligands. The resulting neutral [Na(NH3)3]2[Na(NH3)2]SbS3 molecules crystallize together with two ammonia molecules of solvation in the space group P21/c (a=9.828(2), b=6.0702(4), c=33.4377(6) Å, β=91.362(7)°, V=1994.2(5) Å3, Z=4).  相似文献   

20.
A cluster complex of the composition [Zn2(NH3)6(μ-OH)][Zn(NH3)4]0.5[Re4Te4(CN)12]·5H2O is obtained by the interaction of an aqueous solution of K4[Re4Te4(CN)12]·5H2O with an aqueous ammonia solution of ZnCl2. The compound crystallizes in the C2/m (12) monoclinic space group with unit cell parameters a = 23.233(2) ?, b = 14.5906(16) ?, c = 14.3825(15) ?, β = 125.169(1)°, V = 3985.5(7) ?3, Z = 4, d x = 3.290 g/cm3. The structure is built from cluster [Re4Te4(CN)12]4− anions and complex [Zn2(NH3)6(μ-OH)]3+ and [Zn(NH3)4]2+ cations; the latter is disordered over two positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号