首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The 124 superconductor YBa2Cu4O8 was prepared from the oxalate precursor Y2(C2O4)3. ·4BaC2O4·8CuC2O4·xH2O at one atmosphere oxygen pressure. In O2 the precursor decomposes in one step at 300°C and more gradually (300°–600°C) in Ar. The stability of the superconductor is strongly dependent on the gas atmosphere: in O2 and in air there is no significant weight change as long as the temperature does not exceed 800°C, whereas in a 1% O2-99%N2 mixture decomposition starts at about 670°C with the formation of CuO and YBa2Cu3Ox withx<7. The reduction of YBa2Cu4O8 in a 5% H2-95% Ar mixture takes place in at least four major steps with formation of products such as Y2O3, BaO, Cu2O, Cu, BaY2O4 and Ba4Y2O7.  相似文献   

2.
We propose a reaction model for the synthesis of YBa2Cu4O8 under normal pressure conditions, which contains 4 partial reaction steps. In a first step bariumnitrate and copperoxide react to Ba2Cu3O5+δ. This substance will be formed for each mixtures Ba:Cu=2∶3...3∶2. The following two partial reaction steps are connected to Ba2Cu3O5+δ, which reacts with Y2O3 and CuO to YBa2Cu4O8 or decomposes to BaCuO2 and CuO. In a last step parts of BaCuO2 reacts with Y2O3 and CuO to YBa2Cu4O8.  相似文献   

3.
Solid state reactions at 925°C between the high-T c ceramic superconductor YBa2Cu3O7?δ and La2O3 and SrCO3, respectively, mixed in various molar ratiosr=MeOn/YBa2Cu3O7?δ, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa2Cu3O7?δ and La2O3 yielded (La1?xBax)2CuO4?δ, withx≈0.075?0.10. La2?xBa1+xCu2O6?δ, withx≈0.2?0.25 and La-doped (Y1?xLax)2BaCuO5, withx≈0.10?0.15. Forr=3.0, Y-doped La2BaCuO5 resulted also. The reaction between YBa2Cu3O7?δ and SrCO3 yielded (Sr1?zBaz)2CuO3, withz≈0.1, Y2(Ba1?zSrz)CuO5, withz=0.1?0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba0.5Sr0.5)5Cu3.5O10±δ. At values ofr≤2.0, unsubstituted YBa2Cu3O7?delta was found in the reaction products.  相似文献   

4.
The phase composition of Y x Ba1?x CuO y (x = 0.29?0.40) samples annealed in air (at 930?C990°C) and in an oxygen atmosphere (450?C800°C, P(O2) = 101 kPa) was studied by X-ray powder diffraction, chemical analysis, electron diffraction, and elemental analysis in a transmission electron microscope. A considerable cation nonstoichiometry was discovered in particles having the tetragonal and orthorhombic structures of YBa2Cu3O6 + ??. The variation range of particle compositions comprises matrix oxides of the Ba m Cu m + n O y series with (Ba: Cu) 3: 5, 5: 8, 2: 3, and 5: 7, which in the presence of yttrium form the Y n Ba m Cu m + n O y series. Tetragonal oxides Y2Ba3Cu5O y (235), Y3Ba5Cu8O y (358), YBa2Cu3O y (123), and Y2Ba5Cu7O y (257) are formed at the primary synthesis step in air and are preserved in an orthorhombic structure during short-term (1 h) oxygen annealing. Most particles of the 3: 5 and 5: 8 oxides are undersaturated with yttrium relative to the stoichiometry of the Y n Ba m Cu m + n O y series, those of the 2: 3 oxide correspond to this stoichiometry, and those of the 5: 7 oxide are supersaturated with yttrium over the stoichiometry. A trend is observed for the fractions of these oxides to change during long-term (5?C51 h) annealing in an oxygen atmosphere at 450°C and to the alternation of the dominant role of one of the four phases with the superconducting transition temperature T c = 82, 85, 86, and 91 K. Each orthorhombic oxide undergoes structural transformations during oxygen annealing with a change in T c. The coexistence of these oxides in the form of nanometer-sized domains does not allow their individual superstructures to be recognized.  相似文献   

5.
Mass transfer during the electrolysis of melts of Y0.02Ba0.30Cu0.70O y and Y0.02Ba0.25Cu0.75O y samples was studied at 950°C (for 0.5 h) and currents of 5–1050 mA. YBa2Cu3O6 + δ (123) tetragonal oxide crystal boules were grown, and their cationic composition and structure were studied by X-ray powder diffraction and by electron diffraction and elemental analysis in a transmission electron microscope (ED/TEM and EA/TEM). The 123 oxide was found to have cationic off-stoichiometry and to have a domain structure with domain sizes of 20–50 Å. Magnetic susceptibility versus temperature curves measured in the crystals after oxygen annealing (450°C, 1 h) feature four kinks, which indicate the occurrence of four superconducting phases with T c = 45, 52, 75, and 86 K. Electrolysis byproducts are platinum-containing oxides Ba9Pt4Cu3O y and Ba50Pt15Y16Al13Cu7O y unknown hitherto; we report structure data for them.  相似文献   

6.
A method of calculation of average heat capacities of phase transformation products of complex oxides is suggested. The method takes into account the physical state of products and the increase in the heat capacities of products due to the change of entropy at a phase transformation. Average heat capacities of products formed in a congruous melting of compounds (YCuO2 and Y4Ba3O9), in an incongruous melting of compounds (Y2Cu2O5, BaCuO2, BaCu2O2, Y2BaCuO5, YBa2Cu3O7, YBa2Cu3O6) and in a decomposition in a crystalline state of compounds (Y2BaO4, Y2Ba2O5, Y2Ba4O7, Ba2CuO3, Ba3Cu5O8, YBa2Cu3.5O7.5, YBa2Cu4O8, YBa2Cu5O9) was estimated by using three methods.  相似文献   

7.
A thermodynamical method for the estimation of decomposition heat in a crystal state, incongrous and congruous melting of compounds with the use of temperature dependencies of total entropies of compounds was suggested. Entropies and heats of phase transformation of YBa2Cu3O6, YBa2Cu3O7, YBa2Cu3.5O7.5, YBa2Cu4O8, YBa2Cu5O9, YBa4Cu3O8.5, Y2BaO4, Y2Ba2O5, Y2Ba4O7, Y4Ba3O9, YCuO2, Y2Cu2O5, Y2BaCu2O5, Ba2CuO3, BaCuO2, BaCu2O2, Ba3Cu5O8 were calculated. Data, obtained by the authors earlier, are discussed.  相似文献   

8.
The conditions of synthesis of a pure YBa2Cu3O7−δ powder under very low pressure were investigated. In a first part, the decomposition processes of a (Y2O3, Ba(NO3)2, CuO) mixture are determined using controlled transformation rate thermal analysis (CRTA). Under a 4,5.10−6 bar pressure, the total decomposition of all precursors is obtained below 470°C. In a second part, the thermal behaviour of YBa2Cu3O7−δ phase is analysed in order to determine its thermodynamic stability under these conditions of low pressure. A decomposition sequence is proposed based on oxygen release analyses and literature data. Conditions of synthesis of a pure YBa2Cu3O7−δ powder (without any chemical impurities) are finally suggested.  相似文献   

9.
《Solid State Sciences》1999,1(5):311-320
Freeze dried complex carboxylates are highly reactive precursors for complex perovskite solid solutions in the system BaO-CuO-Y2O3-Nb2O5 On thermal decomposition of the amorphous precursors the formation of complex crystalline phases begins at 600 °C. In most cases the themodynamically controlled phase composition is reached after a reaction time of two hours at about 900 °C. Beginning from the perovskite compound Ba2YNbO6 a partial substitution of Y by Cu or by a combination 2/3 Cu,1/3 Nb leads to extended fields of solid solutions with cubic perovskite structure. Substitution according to Y0,5xBa2(Y1-0,5xCuxNb)O6+x is limited to x ≤ 0,4. A compound LBa2Cu2NbO8 (x=2), well characterized for L=La, does not exist for L=Y. The composition of solid solutions depends on the preparation conditions. There are some signs for an inhomogeneous distribution of B-cations in the cubic perovskites.  相似文献   

10.
The high-Tc Y1Ba2Cu3O7−δ superconductor with oxygen ion vacancies was employed as the cathode for a high-temperature solid-oxide fuel cell (SOFC). The cathodic current-overpotential characteristics were studied in the temperature range from 500 to 800 °C and the oxygen pressure range from 10−4 to 0.21 atm. The delocalization of the triple-phase boundary and the oxygen reduction mechanism were identified. The delocalized triple-phase boundary of Y1Ba2Cu3O7−δ improves the cathodic polarization in SOFCs. By using a mathematical simulation and a particular experimental design, the oxygen adsorption step in the oxygen reduction process was demonstrated to be rate limiting. A layer of strong oxygen-adsorption catalyst such as Pt or Ag coated on the Y1Ba2Cu3O7−δ electrode was found to be able to largely enhance the activity of oxygen reduction by improving the ability of oxygen to be adsorbed on the electrode surface. Received: 28 October 1997 / Accepted: 16 January 1998  相似文献   

11.
Abstract

A solid hetero-bimetallic complex of Ba+2 and Cu+2 was prepared by slow evaporation of a 3/1 CH3CN/CH3OH mixture containing 15-crown-5 and the chloride salts of Ba+2, Cu+2, and Y+3. The resulting complex was studied using single crystal X-ray diffraction. [Ba(15-crown-5)2][CuCl4] crystallizes in the monoclinic space group Pn with cell parameters (20°C), a=12.119(2), b=9.386(2), c=13.475(3)Å, β=93.81(2)°, and D calc=1.70 g cm?3 for Z=2. Ba+2 is coordinated to all 10 oxygen atoms of two 15-crown-5 molecules in a sandwich geometry. Cu+2 is coordinated to the four chloride anions and exhibits a distorted tetrahedral geometry. The two shortest Cu…Ba separations are 6.855(2) and 6.902(2)Å.  相似文献   

12.
The electrochemical performance of the layered perovskite YSr2Cu3−xCoxO7+δ, a potential solid oxide fuel cell (SOFC) cathode, is improved by increasing the Co content from x = 1.00 to a maximum of x = 1.30. Single phase samples with x > 1.00 are obtained by tuning the Y/Sr ratio, yielding the composition Y1−ySr2+yCu3−xCoxO7+δ (where y ≤ 0.05). The high temperature structure of Y0.95Sr2.05Cu1.7Co1.3O7+δ at 740 °C is characterised by powder neutron diffraction and the potential of this Co-enriched material as a SOFC cathode is investigated by combining AC impedance spectroscopy, four-probe DC conductivity and powder XRD measurements to determine its electrochemical properties along with its thermal stability and compatibility with a range of commercially available electrolytes. The material is shown to be compatible with doped ceria electrolytes at 900 °C.  相似文献   

13.
In this paper the theoretical approach and applications of Cahn ultramicrobalance to kinetic study on the thermal decomposition of the high-temperature Y1Ba2Cu3O7-x superconductor are presented. Thermogravimetric in situ measurements of oxygen loss from Y1Ba2Cu3O6 samples heated isothermally in a relatively high dynamic vacuum were performed with a Cahn RG electrobalance. Single-phase orthorhombic samples of composition Y1Ba2Cu3O7-x (highest oxygen content) were synthesized from stoichiometric (1:2:3) mixtures of high-purity Y2O3, BaCO3 and CuO. The original 1:2:3 mixture was prepared by the two-stage procedure described earlier. The crystal structure of the sample in the original orthorhombic phase was controlled by the X-ray powder method (CuKα radiation) using a Stadi P Stoe diffractometer with a position-sensitive detector. Activation energy is estimated from appropriate Arrhenius plots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Preparation of lithium garnet Li7La3Zr2O12 (LLZ) in cubic phase by solid state method requires high temperature sintering around 1,200 °C for 36 h in Al2O3 crucible with intermittent grinding. Synthesis of LLZ in cubic phase at lower temperatures by wet chemical methods was reported earlier, however that decompose at high temperature around 850 °C. In this work we report the systematic studies on synthesis of garnet structured electrolytes by modified sol–gel method by the simultaneous substitution of Li+ and Y3+ for Zr4+ according to the formulae Li7+x La3Y x Zr2-x O12 (x = 0, 0.1, 0.2, 0.3 and 0.4). The present investigation revealed that the cubic garnet phase is obtained at much lower temperature for Li7La3Zr2O12 and the simultaneous increase of both Li+ and Y3+ in Li7+x La3Y x Zr2-x O12 requires slightly higher sintering temperatures for the formation of cubic garnet phase. SEM micrographs of the Li7+x La3Y x Zr2-x O12 (x = 0, 0.1, 0.2, 0.3 and 0.4) annealed at minimum sintering temperature required for the formation of cubic garnet phase revealed the increase in grain size and relatively dense structure with increase of x in Li7+x La3Y x Zr2-x O12.  相似文献   

15.
Sintering processes in the Y2O3–Al2O3–B2 O3 system and its subsystems (Y2O3–B2O3 and Al2 O3–B2O3) have been investigated by using combined DTA and XRD measurements to get a better understanding of solid state chemical changes resulting in the formation of yttrium aluminum borate (YAl3(BO3)4, YAB) phase and to study the possible role and contribution of various simple borates formed also in the former processes. Two new exothermic heat effects of YBO3 formation have been detected by DTA in the Y2O3–B2O3 system between 720 and 980°C. In the Al2O3–B2O3 system a new experimental XRD profile of Al4B2O9 was observed. Formation of these borates seems to promote the nucleation of double borate YAB below 1000°C. Conversion of Al4B2O9 to Al18B4 O33 was observed after a long term (10 h) sintering at 1050°C. Similarly, an increased formation of YAB has been observed as a product of the sintering reaction between YBO3 and Al18B4O33 at 1150°C. The two latter single borates are found to be identical with the high temperature decomposition products of YAB. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The paper presents the results of studies on thermal reduction and oxidation of the nonstoichiometric phases from the Y-Ba-Cu-O in air.The thermogravimetric (TG, DTA) experiments were performed in air in order to establish the ranges of stoichiometry and temperature of oxidation and reduction of YBa2Cu3Ox, YBa4Cu3Ox, YBa5Cu2Ox and Y3Ba8CusOx.It has been found, that at 950°C in air there are four oxygen deficient ternary cuprates: YBa2Cu3O6.02, YBa4Cu3O8.01, YBa5Cu2O8.35, Y3Ba8Cu5O16.45 and stoichiometric Y2BaCuO5. When these nonstoichiometric cuprates are cooled slowly to room temperature in air they oxidize to the following compositions: YBa2Cu3O6.98, YBa4Cu3O8.97, Y3Ba8Cu5O18 and YBa5Cu2O8.97.This work has been supported by the CPBR 6.6.64 research programme.  相似文献   

17.
The new compound, Ba4Nb14O23, has been prepared by heating mixtures of Ba5Nb4O15, Nb2O5 and Nb at 1 450°C under Ar. Ba4Nb14O23 has been studied by means of high resolution electron microscopy and X-ray powder diffraction techniques. It has a C-centered orthorhombic unit cell with a=20.782(4), b=12.448(3), c=4.148(1) Å and Z=2. The structure of Ba4Nb14O23 can be considered as being an intergrowth between BaNbO3 and NbO. Characteristic building units are triple chains of corner sharing Nb6 octahedra which are connected via columns of the perovskite type structure to a three dimensional network.  相似文献   

18.
A highly homogeneous and nearly monophasic PrBa2Cu4O8 compound has been synthesized at 1 atm of oxygen via a route employing polymeric ethylenediamine/citric acid precursors. The PrBa2Cu4O8 compound with a trace amount of BaCuO2 was synthesized for the first time by sintering the pellets at the temperature of 875 °C under ambient oxygen pressure. The temperature coefficient of the resistivity is positive below 190 K while above 190 K is negative. The superconducting transition was not detected down to 4.2 K. Samples were characterized by X-ray diffraction, scanning electron microscopy, thermal analysis, and transport and magnetic measurements.  相似文献   

19.
A New Quaternary Oxotitanate: Ba4Ti10Al2O27 Single crystal of Ba4Ti10Al2O27 were prepared by heating oxide mixtures with NaOH flux for 20 days to 1300°C. X-ray investigations show monoclinic symmetry: a = 1973.7; b = 1134.9; c = 983.7 pm; β = 109.4°; space group C2h3—C2/m. Ti4+/Al3+ occupy statistically more or less distorted octahedra, Ba2+ has an coordination number of 11 or 12, respectively. The complex frame work of octahedra is discussed.  相似文献   

20.
Ba8Cu16P30 – a New Ternary Variant of the Clathrate I Type Structure Ba8Cu16P30 (a = 14.117(1) Å, b = 10.093(1) Å, c = 28.022(2) Å) was prepared by heating a mixture of the elements (800°C; excess of Ba and P; removal of the by-products by acetic acid/H2O2). The compound crystallizes orthorhombically (Pbcn; Z = 4) in a new superstructure of the cubic clathrate I type structure with an ordered distribution of the atoms. The structure is characterized by a three-dimensional framework of CuP4 tetrahedra with cavities in the form of pentagonal dodecahedra and tetrakaidecahedra, which are occupied by the Ba atoms. The compound shows semiconduction, therefore the composition should be Ba8Cu15.5P30.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号