首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vinylogous β-Cleavage of Enones: UV.-irradiation of 4-(3′,7′,7′-trimethyl-2′-oxabicyclo[3.2.0]hept-3′-ene-1′-yl)but-3-ene-2-on On 1π,π*-excitation (λ = 254 nm) in acetonitrile (E/Z)- 2 is converted into the isomers 4–9 and undergoes fragmentation yielding 10 ; in methanol (E/Z)- 2 gives 7–10 and is transformed into 11 by incorporation of the solvent. On 1π,π*-excitation (λ λ?347 nm; benzene-d6) (E)- 2 is isomerized into (Z)- 2 , which is converted into the isomers 3 and 4 by further irradiation. 1π,π*-Excitation (λ = 254 nm; acetonitrile) of 4 gives 6 and (E)- 9 , whereas UV.-irradiation (λ = 254 nm; acetonitrile-d3) of 5 yields (E)- 7 and 8 . On 1π,π*-excitation (λ = 254 nm; acetonitrile) of (E/Z)- 12 the compounds (E)- 14 and (E)- 15 are obtained.  相似文献   

2.
Azimines. V. Investigation on the Stereoisomerism Around the N (2), N (3) Bond in 2, 3-Dialkyl-1-phthalimido-azimines 2, 3-(cis-1, 3-Cyclopentylene)-1-phthalimido-azimine ( 7 ) and isomerically pure (2 Z)- and (2 E)-2, 3-diisopropyl-1-phthalimido-azimine ( 9a and 9b ) were prepared by the addition of phthalimido-nitrene ( 1 ) to 2, 3-diazabicyclo [2.2.1]hept-2-ene ( 6 ) and to (E)- and (Z)-1, 1′-dimethylazoethane ( 8a and 8b ), respectively. Comparison of their UV. spectra with those of two stereoisomeric azimines of known configuration, namely (1 E, 2 Z)- and (1 Z, 2 E)-2, 3-dimethyl-1-phthalimido-azimine ( 5a and 5b ), reveals that 2, 3-dialkyl-1-phthalimido-azimines with (2 Z)-configuration are characterized by a shoulder at about 258 nm (? ≈? 14,000) and those with (2 E)-configuration by a maximum at 270–278 nm (? ≈? 10,000). The (2 E)-azimine 9b isomerizes under acid catalysis as well as thermally and photochemically into the more stable (2 Z)-isomer 9a . Under the last two conditions the isomerization is accompanied by a slower fragmentation with loss of nitrogen into N, N′-diisopropyl-N, N′-phthaloylhydrazine ( 4 , R = iso-C3H7). The same fragmentation was also observed on thermolysis and photolysis of the (2 Z)-isomer 9a . The kinetic parameters for the thermal isomerization of 9b (they fit first-order plots) and for the fragmentation of 9a and 9b were determined by 1H-NMR. spectroscopy in benzene, trichloromethane and acetonitrile. In the photolysis of 9a or 9b the fragmentation is accompanied by dissociation into the azo compounds 8a or 8b and the nitrene 1 , the latter being subject to trapping by cyclohexene. With the azimine 7 , an analogous thermal fragmentation was observed to give N, N′-(cis-1, 3-cyclo-pentylene)-N, N′-phthaloylhydrazine ( 15 ), but more energetic conditions were required than with 9 . Photolysis of 7 led exclusively to dissociation into the azo compound 6 and the nitrene 1 , perhaps because the fragmentation of 7 is prevented by ring strain.  相似文献   

3.
Starting from the esters (2E,4S)- 6 and (2E,4R)- 6 , bromo aldehydes (S)- 9 and (R)- 9 as well as bromo alcohols (S)- 10 and (R)- 10 , respectively, were prepared. Bromo alcohol (R)- 8 was converted to the diol (2E,4R)- 16 . Ozonolysis of the latter led to aldehyde (R)- 17 , which was transformed, by a Wittig reaction, to (2R,4E,6R)- 18 , corresponding to the C(7)-to-C(14) segment of phomenoic acid ( 1 ). Attempts to improve the yields by applying a Julia coupling of (R)- 23 , which was prepared from (2E,4R)- 7 , with (R)- 24 were unsuccessful. Finally, the coupling of the iodo derivative (2E,4S)- 28 with the lithiated derivative of 1,3-dithiane 30 by the Corey-Seebach ‘Umpolung’ led to (3S,4E)- 32 which is a derivative of the C(7)-to-C(14) segment of 1 , suitable for further transformations.  相似文献   

4.
The wavelength dependence of the photolysis of 7-methyl-β-ionone ((E)- 1 ) was investigated. Irradiation of (E)- 1 with light of λ > 347 nm leads primarily to (E/Z)-isomerization followed by transformation to the tricyclic enol ether 3 as the only secondary photoproduct. On photolysis of (E)- 1 with light of shorter wavelength (λ > 280 nm or λ = 254 nm), however, a series of other products was formed (via a) photocyclization of the dienone chromophore (→ 5 ), (b) photo-enolization (→ 8 ), and (c) a 1,5-sigmatropic H-shift (→ (E/Z)- 7 ). For the structure elucidation of the new products, 7-[13C]methyl-β-ionone ((E)-[7-methyl-13C]- 1 ) was prepared and irradiated furnishing the corresponding 13C-labelled photoproducts.  相似文献   

5.
To demonstrate the neighbouring-group participation of the 2-benzyloxy group in the glycosidation of phenols and of strongly acidic alcohols by the diazirine 1 , we examined the glycosidation of 4-nitrophenol, 4-methoxyphenol, (CF3)2CHOH, MeOH, and i-PrOH by the diazirine 11 , derived from the 2-deoxypyranose 6 . Oxidation of the oximes 7 yielded (E)- and (Z)- 8 . In solution, (E)- 8 isomerised to (Z)- 8 . Similarly, the (E)-configurated mesylate 9 , prepared from 8 , underwent acid-catalysed isomerisation to (Z)- 9 . Treatment of (Z)- 9 with NH3, followed by oxidation of the resulting diaziridine 10 with I2, yielded the desired diazirine 11 . Glycosidation by 11 of the above mentioned hydroxy compounds yielded the glycosides 12–21 . In agreement with the postulated neighbouring-group participation, these glycosidation proceeded without, or with a very low diastereoselectivity, favouring the axial anomers.  相似文献   

6.
Two Novel Sulfide Chlorides of the Lanthanides: Synthesis and Crystal Structure of Pr7S6Cl9 and Nd7S6Cl9 The reactions of the elemental lanthanides (M = Pr and Nd, resp.) with sulfur and the respective trichlorides (MCl3) in evacuated silica tubes (850 °C, 7 d) yield single-phase sulfide chlorides of the composition M7S6Cl9 when appropriate molar ratios (4 : 6 : 3) of the reactants (M : S : MCl3) are used. A slight excess of trichloride as a flux promotes the formation of lath-shaped transparent single crystals (Pr7S6Cl9: pale green, Nd7S6Cl9: pale violet) which prove to be water soluble and sensitive to hydrolysis. The crystal structure was determined from X-ray single-crystal data taking Nd7S6Cl9 (monoclinic, P2/c (no. 13); a = 2425.0(9), b = 664.2(2), c = 691.8(2) pm, β = 97.43(3)°, Z = 2; R = 0.060, Rw = 0.048) as an example. According to Guinier powder data, Pr7S6Cl9 crystallizes isotypically with a = 2441.6(9), b = 669.1(2), c = 696.3(2) pm, and β = 97.74(3)°. Thus four crystallographically independent cations (M3+) are present, each except for M2 coordinated by four S2– but differing in the number of their next Cl neighbors. The figures of coordination are completed by four Cl about M1 (square antiprism, CN = 8) and by three Cl each about M3 and M4 (monocapped trigonal prisms, CN = 7, 2 Ç ). In contrast, M2 is coordinated by only two S2– but five (plus one) Cl as bicapped trigonal prism (CN = 7 + 1). Eight crystallographically different anions, although indistinguishable by X-ray diffraction, exhibit coordination numbers of four (3 Ç S2– and 1 Ç Cl) and three (4 Ç Cl) with respect to the cations. So PbO-analogous layers of the composition 2∞{[(S6/7Cl1/7)M4/4]7}8+ parallel (010) are formed, consisting of 6/7 of S2– and only 1/7 of Cl as centering anions for the edge-shared (M3+)4 tetrahedra for reasons of charge neutrality. These cationic layers are held together by alternatingly sheathed layers of Cl with only threefold coordinated anions.  相似文献   

7.
Photochemistry of Cyclic Acetals of the 1,3-Dioxa-4,6-cycloheptadiene Type UV.-irradiation (λ=254 nm) of 3 gives the isomers (E)- 5 (4%), (Z)- 5 (60%) and 6 (3%). On triplet sensitization (acetone; λ ≥ 280 nm) 3 is converted to (E)- 5 (3%), (Z)- 5 (7%) and 7 (9%). ? The 1π,π*-excitation (λ=254 nm) of 4 yields the isomers 2 (9%), 8 (10%), 9 (34%), 10 (20%) and 11 (3%). On thermolysis (200°) 4 gives 10 (87%) by a Claisen-rearrangement.  相似文献   

8.
The title compounds (E/Z)- 7 were prepared in 66% overall yield by reaction of β-ionone ((E)-( 1 ) with lithium dimethylcuprate, trapping of the intermediate enolate with benzeneselenenyl bromide and oxidation with H2O2. Analogously, (E/Z)-7-methyl-α-inone ((E/Z)- 12 ) was obtained in 65% yield from α-ionone ((E)- 11 ). 1n, π*- Excitation (λ > 347 nm, pentane) of (E)-7 causes rapid (E/Z)-isomerization and subsequent reaction of (Z)- 7 to 15 (66%). The formation of 15 is explained by twisting of the dienone chromophore due to repulsive interaction of the 7-CH3-group with the CH3-groups of the cyclohexene ring. On the other hand, irradiation λ > 347 nm, Et2O) of (E)- 7 in the presence of acid leads to (Z)- 7 (5%) and to the novel compound 16 (88%).  相似文献   

9.
Schiff base derivatives have gained great importance due to revealing a great number of biological properties. Schiff bases were synthesized by treatment of 4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one ( 1 ) with various aldehydes in methanol at reflux. In addition, diamine was reacted with an aldehyde to yield the corresponding Schiff bases. The structures of synthesized Schiff bases were elucidated by spectroscopic methods such as microanalysis, 1H-NMR, 13C-NMR, and FTIR. Antioxidant activities of synthesized Schiff bases were carried out using different antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, and reducing power activity. (E)-4-((1H-indol-3-yl)methyleneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one ( 3 ), (E)-1,5-dimethyl-4-((2-methyl-1H-indol-3-yl)methyleneamino)-2-phenyl-1H-pyrazol-3(2H)-one ( 5 ), (E)-1,5-dimethyl-2-phenyl-4-(thiophen-2-ylmethyleneamino)-1H-pyrazol-3(2H)-one ( 7 ), (E)-1,5-dimethyl-2-phenyl-4-(quinolin-2-ylmethyleneamino)-1H-pyrazol-3(2H)-one ( 9 ), (1S,2S,N1,N2)-N1,N2-bis((1H-indol-3-yl)methylene)cyclohexane-1,2-diamine ( 11 ), and (1S,2S,N1,N2)-N1,N2-bis((2-methyl-1H-indol-3-yl)methylene)cyclohexane-1,2-diamine ( 12 ) were synthesized in high yields. Compound 5 displayed a good ABTS•+ activity. Compound 3 revealed the outstanding activity in all assays. Compound 7 has the best-reducing power ability in comparison to other synthesized compounds. Although compounds 5, 11, 12 are new, compounds 3, 7, 9 are known. Due to revealing a good antioxidant activity, the synthesized compounds ( 3, 5, 7 ) have the potential to be used as synthetic antioxidant agents.  相似文献   

10.
Stereoselective syntheses of 2exo, 3exo-bis (chloromethyl)-5-[(Z)-chloromethylidene]- ( 9 ), 2exo, 3exo-bis (chloromethyl)5-[(E)-chloromethylidene]- ( 10 ) and 2exo, 3exo-bis(chloromethyl)-5-[(E)-methoxymethylidene]-6-niethylidene-7-oxa-bicyclo[2.2.1]heptane ( 13 ) are presented. Double elimination of HCI from 9, 10 and 13 yielded 2-[(Z)-chloromethylidene]- ( 14 ), 2-[(E)chloromethylidene]- ( 15 ) and 2-[(E)-methoxymethylidene]-3,5,6-mmethylidene-7-oxabicycio[2.2.1]heptane ( 18 ), respectively, without loss of the olefin configuration. Ethylene tetracarbonitrile (TCE) and N-phenyltriazolinedione (NPTAD) added to these new exocyclic dienes and tetraenes preferentially onto their exo-face. The same face selectivity was observed for the cycloadditions of TCE to the (Z)- and (E)-chlorodienes 9 and 10 , thus realizing a case where the kinetic stereoselectivity of the additions is proven not to be governed by the stability of the adducts. The exo-face selectivity of the Diels-Alder additions of dienes grafted onto 7-oxabicyclo [2,2.1]heptanes contrasts with the endo-face selectivity reported for a large number of cycloadditions of dienes grafted onto bicyclo[2.2.1]heptane skeletons.  相似文献   

11.
Rose bengal-sensitized photooxygenation of 4-propyl-4-octene ( 1 ) in MeOH/Me2CHOH 1:1 (v/v) and MeOH/H2O 95:5 followed by reduction gave (E)-4-propyl-5-octen-4-ol ( 4 ), its (Z)-isomer 5 , (E)-5-propyl-5-octen-4-ol ( 6 ), and its (Z)-isomer 7 . Analogously, (E)-4-propyl[1,1,1-2H3]oct-4-ene ( 2 ) gave (E)-4-propyl[1,1,1-2H3]oct-5-en-4-ol ( 14 ), its (Z)-isomer 15 , (E)-5-[3′,3′,3′-2H3]propyl-5-octen-4-ol ( 16 ), its (Z)-isomer 17 , and the corresponding [8,8,8-2H3]-isomers 18 and 19 (see Scheme 1). The proportions of 4–7 were carefully determined by GC between 10% and 85% conversion of 1 and were constant within this range. The labeled substrate 2 was photooxygenated in two high-conversion experiments, and after reduction, the ratios 16/18 and 17/19 were determined by NMR. Isotope effects in 2 were neglected and the proportions of corresponding products from 1 and 2 assumed to be similar (% 4 ≈? % 14 ; % 5 ≈? % 15 ; % 6 ≈? % ( 16 + 18 ): % 7 ≈? % ( 17 + 19 )). Combination of these proportions with the ratios 16/18 and 17/19 led to an estimate of the proportions of hydroperoxides formed from 2 . Accordingly, singlet oxygen ene additions at the disubstituted side of 2 are preferred (ca. 90%). The previously studied trisubstituted olefins 20–25 exhibited the same preference, but had both CH3 and higher alkyl substituents on the double bond. In these substrates, CH3 groups syn to the lone alkyl or CH3 group appear to be more reactive than CH2 groups at that site beyond a statistical bias.  相似文献   

12.
1n, π*-Excitation of the γ,δ-epoxy-enone (E)- 3 leads exclusively to the conformers (Z)- 3A + B . On 1π, π*-excitation of (E)- 3 , in addition to (Z)- 3A + B , products 6–9 arising from a carbene intermediate e are formed. However, products of an isomerization via C(γ), O-bond cleavage of the oxirane were not formed on either mode of excitation. On thermolysis, at 80° the conformer (Z)- 3A is transformed into (Z)- 3B , which on photolysis returns to (Z)- 3A and (E) -3 . At 160°, however, (Z) -3B rearranges to the isomers 6, 10 and 11 .  相似文献   

13.
Wittig reaction of crocetindial ( 1 ) and benzylidenetripenylphosphorane ( 2 ) gave (7E, 7′Z)-7,7′-diphenyl-7-7′-diapocarotene ( 3 ), instead of the previously reported (7E, 7′E)-isomer. Similar reaction of 8,9-didehydrocrocetindial ( 4 ) with 2 yielded the three acetylenic isomers 5a–c which differ in the configuration of the terminal double bonds. Structures were established by 1D- and 2D-NMR studies. Illustrative spectra and their interpretation are presented. Most chemical shifts of corresponding protons in 3 and 5 and nearly identical, but 13C shifts differ considerably.  相似文献   

14.
The sex pheromone of the endoparasitoid insect Xenos peckii (Strepsiptera: Xenidae) was recently identified as (7E,11E)‐3,5,9,11‐tetramethyl‐7,11‐tridecadienal. Herein we report the asymmetric synthesis of three candidate stereostructures for this pheromone using a synthetic strategy that relies on an sp3–sp2 Suzuki–Miyaura coupling to construct the correctly configured C7‐alkene function. Comparison of 1H NMR spectra derived from the candidate stereostructures to that of the natural sex pheromone indicated a relative configuration of (3R*,5S*,9R*). Chiral gas chromatographic (GC) analyses of these compounds supported an assignment of (3R,5S,9R) for the natural product. Furthermore, in a 16‐replicate field experiment, traps baited with the synthetic (3R,5S,9R)‐enantiomer alone or in combination with the (3S,5R,9S)‐enantiomer captured 23 and 18 X. peckii males, respectively (mean±SE: 1.4±0.33 and 1.1±0.39), whereas traps baited with the synthetic (3S,5R,9S)‐enantiomer or a solvent control yielded no captures of males. These strong field trapping data, in combination with spectroscopic and chiral GC data, unambiguously demonstrate that (3R,5S,9R,7E,11E)‐3,5,9,11‐tetramethyl‐7,11‐tridecadienal is the X. peckii sex pheromone.  相似文献   

15.
Photoisomerization of an aromatic analogue of retinoic acid, ethyl all-trans-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6, 8-tetraenoate 1 in dilute solutions of hexane, benzene, and ethanol yielded multi-component mixtures of cis isomers which were separated by HPLC. FT-1H-NMR. at 270 MHz and, in some cases, homonuclear decoupling and Overhauser experiments as well as 13C-NMR. were applied to establish the structures of 4 mono-cis, 4 (of 6 possible) di-cis, and 3 (of 4 possible) tri-cis isomers. The structures of 3 isomeric esters, namely (2Z, 4E, 6E, 8E) 6 , (2Z, 4Z, 6E, 8E) 9 , and (2Z, 4Z, 6Z, 8E) 7 were independently confirmed by direct syntheses. The 1H-NMR. data of all these compounds and the 13C-NMR. data of the all-trans and of 6 cis isomers available in sufficiently large quantities are discussed.  相似文献   

16.
The synthesis of four electropolymerizable 2,2′-bipyridinium salts with tuned reduction potential (E1°) is described (N,N′-ethylene-4-methyl-4′-vinyl-2,2′-bipyridinium dibromide ( 4 ; E1° ?–0.48 V), 4-methyl-N, N′-(trimethylene)-4′-vinyl-2,2′-bipyridinium dibromide ( 5 ; E1°? ?0.66 V), N,N′-ethylene-4-methyl-4′-[2-(1H-pyrrol-1-yl)ethyl]-2, 2′-bipyridinium bis(hexafluorophosphate) ( 6b ; E1°? ?0.46 V), and 4-methyl-4′-[2-(1H-pyrrol-1-yl)ethyl]-N, N′-(trimethylene)-2,2′-bipyridinium bis(hexafluorophosphate) ( 7b ; E1°? ?0.66 V)). E1°-Tuning is based on the torsional angle C(3)–C(2)–C(2′)–C(3′), imposed by the N,N′-ethylene and N,N′-(trimethylene) bridge. The vinylic compounds 4 and 5 undergo cathodic, the pyrrole derivatives 6b and 7b anodic electropolymerization on glassy carbon electrodes from MeCN solutions, yielding thin, surface-confined films with surface concentrations of redox-active material in the range 5 · 10?9 < Γ < 2.10?8 mol/cm2, depending on experimental conditions. The modified electrodes exhibit reversible ‘diquat’ electrochemistry in pure solvent/electrolyte. Copolymerization of 6b or 7b with pyrrole yields most stable electrodes. Bi ayer-film-modified electrodes were prepared by sequential electropolymerization of the monomers. The assembly electrode/poly- 6b /poly- 7b behaves as a switch, it transforms – as a Schmitt trigger – an analog input signal (the electrode potential) into a digital output signal (redox state of the outer polymer film). Forward-(electrode/poly- 7b /poly- 6b ) and reverse-biased assemblies (electrode/poly- 6b /poly- 7b ) were coupled to the electrochemical reduction of redox-active solution species, e.g. N- (cyanomethyl)-N′-methyl-4,4′-bipyridinium bis(hexafluorophosphate) ( 8 ). Zener-diode-like behavior was observed. Aspects of redox-polymer multilayer-film assemblies, sandwiched between two electronic conductors, are discussed in terms of molecular electronic devices.  相似文献   

17.
(all-Z)-(9,10,12,13,15,16-2H6)Octadeca-9,12,15-trienoic acid ( = α-linolenic acid; D6- 4 ) was synthesized to investigate the biochemical formation of linolenic-acid-derived aroma compounds in cultures of the yeast Sporobolomyces odorus, using an established gas chromatographic/mass spectrometric (GC/MS) method. Three compounds were identified as labeled: (Z)-dec-7-eno-5-lactone (δ-jasmin lactone), (Z,Z)-dodeca-6,9-dieno-4-lactone, and (2E,4Z)-hepta-2,4-dienoic acid. Both lactones were biosynthesized mostly under conservation of the initial configuration from their corresponding oxygenated linolenic-acid intermediates. The application of (13S,9Z,11E,15Z)-13-hydroxy(9,10,12,13,15, 16-2H6)octadeca-9,11,15-trienoic acid (D6- 7 ) as a OH-functionalized precursor of δ-jasmin lactone allowed to gain insight into the stereochemical course of the biosynthesis to both enantiomers of this lactone. In this experiment, 88.3% of the metabolized labeled precursor was transformed under retention of the original configuration of the (R)-enantiomer. This investigation is also a contribution to a better understanding of the C?C bond isomerization steps which took place during the β-oxidative degradation of the substrate.  相似文献   

18.
Four- and eight-carbon homologation of benzaldehydes is described. The hydrotelluration of (Z)-1-methoxy-but-1-en-3-ynes 1 afforded (1Z,3Z)-1-butyltelluro-4-methoxy-1,3-butadiene 2, this compound 2 underwent a Te/Li exchange reaction, and the butadienyllithium 3 obtained reacted with benzaldehyde to form the corresponding allylic alcohol 4 with total retention of configuration. The allylic alcohol 4a formed underwent acidic hydrolysis, resulting in 5-phenyl-(2E,4E)-dienal 5 (four-carbon homologation of benzaldehyde). Product 5 reacted with the butadienyllithium 3, affording the alcohol 9-phenyl-(1Z,3Z,6E,8E)-1-methoxy-5-hydroxy-nonatetraene 6, which was hydrolyzed or spontaneously transformed into 9-phenyl-(2E,4E,6E,8E)-tetraenal 7, completing the eight-carbon homologation of benzaldehyde. Reaction of 9-phenyl-nona-(2E,4E,6E,8E)-tetraenal 7 with methyllithium in tetrahydrofuran afforded (3E,5E,7E,9E)-10-phenyl-deca-3,5,7,9-tetraen-2-ol 8. The product of the reaction described was employed in the synthesis of (3E,5E,7E,9E)-10-phenyl-deca-3,5,7,9-tetraen-2-one 9, which is known as navenone B, an alarm pheromone of the mollusk Navanax inermis.  相似文献   

19.
Stereoisomeric Sinensiaxanthins and Sinensiachromes: Separation and Absolute Configuration The so-called sinensiaxanthins and sinensiachromes, important apocarotenols from various fruits, have been separated into 2 and 4 stereoisomers, respectively, and their absolute configurations have been determined: (3S,5R,6S)-5,6-epoxy-5,6-dihydro-10′-apo-β-carotene-3,10′-diol ( 2 ), its (9Z)-stereoisomer 7, the (8R)- and (8S)-epimers of (3S, 5R)-5,8-epoxy-5,8-dihydro- 10′ -apo-β-carotene-3, 10′-diol ( 4 and 5 ), and their (9Z)-stereoisomers 3 and probably 6. Thus, sinensiaxanthins are cleavage products from (Z/E)-isomeric antheraxanthins or violaxanthins (scission at C(9′)–C(10′)) and sinensiachromes analogously from mutatoxanthins or auroxanthins.  相似文献   

20.
The first synthesis of (Z)-neomanoalide ( 4 ) and an improved synthesis of its (E)-isomer 3 was accomplished in a concise, regiocontrolled manner by exploiting 2-[(tert-butyl)dimethylsiloxy]-4{[(tert-butyl)dimethylsiloxy]-methyl}furan ( 6 ) as the key reagent. Lithiation of 6 and subsequent reaction with the (2Z)- or (2E)-isomer of (6E)-3-{[(tert-butyl)dimethylsiloxy]methyl}-7-methyl-9-(2′,6′,6′-trimethylcyclohex-1′-enyl)nona-2,6-dienyl bromide ( 5 ), followed by hydrolysis, afforded the corresponding neomanoalide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号