首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report on the experimental and numerical investigations on afterglows of neon gas discharges, which are performed at the Eindhoven University of Technology. The studied gas pressure range extends from 1 to 100 torr, the discharge current from 1 to 100 mA. The densities of the 1s-levels are measured with the help of the selective excitation spectroscopy (fluorescence technique). In this way a great number of decay curves of the 1s-densities have been measured in the afterglow of neon gas discharges. From these curves the diffusion coefficient of the metastable 1s-atoms, the coefficients of atomic collisional transfer between the 1s5- and 1s4-level, as well as the three body collision coefficient between metastable 1s5-atoms and neon ground state atoms have been determined. Besides these experiments a numerical model of the neon afterglows has been developed. With this model the afterglow phenomena can be simulated and the influence of the particular processes on the whole afterglow can be studied conveniently. Comparison is made between the experimentally and numerically obtained decay curves. For the application of the numerical model a number of starting conditions, such as radial density profiles, gas temperature, (relative) densities of the 1s-levels, have been measured. Results of these measurements are presented. Also with the help of the selective excitation spectroscopy the coefficients of atomic collisional transfer between the 2p-levels have been measured in the afterglow. From these results, together with the measured (relative) intensities of the neon spectral lines in the afterglow the partial recombination coefficients for the 2p-levels were calculated.  相似文献   

2.
By measurements of the electron energy distribution function in a Xe afterglow plasma, the rate constants of the binary ionizing collisions between metastable Xe atoms were determined. The value of β22 = (7.3 ± 1) × 10?10cm3s?1 satisfactorily agrees with the value for a van der Waals capture.  相似文献   

3.
The spectroscopic study of population processes of neon 2p 55s states was carried out in helium afterglow with small admixture of neon at PHe = 38.1 torr, [He]/[Ne]=10?5 with pulsed discharge afterglow in helium with small admixture of neon (pressure equal to 38.1 mm Hg; ). It is established that the main mechanism of population of 3s 2 level (in Paschen’s notation) in the discharge and the initial after-glow is the excitation transfer from metastable atoms of He(21 S 0). The other three levels—3s 3, 3s 4, and 3s 5—corresponding to 2p 55s configuration are populated in the afterglow as a result of the dissociative recombination HeNe+ of ions with electrons. The same process is also the main channel of population of 3s 2 level in the late afterglow phase, when the concentration of He(21 S 0) atoms is small. The hypothesis of recombination mechanism is confirmed by observation of the response of line intensities to pulsed electron heating. The partial coefficients of dissociative recombination into 2p 55s states are estimated.  相似文献   

4.
A study is made of the effects related to the formation of electrode jets in discharges in hydrogen and air at a current of 105–106 A, a current growth rate of 1010 A/s, an initial pressure of 0.1–4.0 MPa, and a discharge gap length of 5–40 mm. After secondary breakdown, jets are observed in a semitransparent discharge channel expanding with a velocity of (4–7)×102 m/s. The formation of shock waves in the interaction of the jets with the ambient gas and the opposite electrode is observed by the shadowgraphy method. Seventy microseconds after the beginning of the discharge, the pressure of the metal vapor plasma near the end of the tungsten cathode amounts to 177 MPa. The brightness temperature in this case is T=59×103 K, the average ion charge number is [`(m)] = 3.1\overline m = 3.1 , and the metal vapor density is n=5.3×1019 cm−3. After 90 μs, the average ion charge number and the metal vapor density near the anode end are [`(m)] = 2.6\overline m = 2.6 and n=7.4×1019 cm−3, respectively. Based on the experimental data, possible reasons for the abnormally high values of the total voltage drop near the electrodes (up to ∼1 kV) are discussed.  相似文献   

5.
Three dual mode microwave apparatus (one using S ‐band and two using X ‐band) have been developed to determine ambipolar diffusion and electron‐ion recombination rates under conditions such that Tgas = 300K and Te is varied from 300 K to 6300 K, in the afterglow period of the dc glow discharge. TheTM010 cylindrical cavity (in S ‐band) and TM011 open cylindrical cavity (X ‐band) are used to determine the electron density during the afterglow period and a non‐resonant waveguide mode is used to apply a constant microwave heating field to the electrons. To test the properties of the apparatus the neon afterglow plasma has been investigated. At Te = 300 K a value of α (Ne+2) = (1.7± 0.2) × 10–7cm3/s is obtained which is in good agreement with values of other investigators. Also similar variations of α as T–0.4e (S ‐band) and as T–0.42e (X ‐band) obeyed over the range 300 ≤ Te ≤ 6300K are in good agreement with some other previous measurements. The simplicity of the X‐band microwave apparatus also allows the measurements of the gas temperature dependency and the study of electron attachment and may be used simultaneously with optical or mass spectrometry investigations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Abstract

The radiation enhanced diffusion (coefficient D*) of U-233 and Pu-238 in UO2 and (U, Pu)O2 with 2.5 and 15% Pu was measured during fission in a nuclear reactor. Normal diffusion sandwiches with a thin tracer layer were used. A radio-frequency furnace allowed the temperatures to be varied between 130 and 1400°. Neutron fluxes (7 × 1012 to 1.2 × 1014 n cm?2 s?1) and irradiation times (56 to 334 h) were also varied to cover ranges of fission rates [Fdot] between 7× 1011 and 6.4 × 1013 f cm?3 s?1 and of doses F between 4.2 × 1017 and 3.1 × 1019 f cm3. Below ~1000°, D* was completely athermal and increased linearly with [Fdot]. It was described by D* = A[Fdot] with A = 1.2× 10?29cm5. A possible temperature dependence was indicated between ~1000and 1200°. The results are explained in terms of thermal and pressure effects of fission spikes and are related with other studies of radiation damage as well as with technologically interesting processes occurring in UO2 during irradiation.  相似文献   

7.
This paper presents the results of investigating the power absorption mechanism of an inductive RF discharge plasma. Dependences of the frequency of elastic electron collisions with inert gas atoms (helium, neon, argon, and krypton) on the pressure are given. In the frequency range of 3 × 106–3 × 107 s?1, an equivalent plasma resistance and the power input into the plasma are determined by the values of collision frequency and electron density within a skin layer and do not depend on the type of gas within the limits of experimental error. Upon reaching the electron temperature of ~1 eV, the energy of the main part of electrons lies in the range of Ramsauer’s minimum for elastic cross section. This leads to a decreasing elastic-collision frequency in heavy inert gases as compared to helium.  相似文献   

8.
Abstract

The present study contributes some new aspects to the general understanding of the ion implantation behaviour of 3 common semiconductor materials, and of diffusion processes in these materials. Single crystals of Si, Ge, and GaAs were bombarded with Kr- or Xe-ions at energies of 40 or 500 keV and doses between 1011 and 2 × 1016 ions/cm2. Gas release measurements and Rutherford scattering of 1 MeV He+-ions combined with channeling were used to study bombardment damage (amorphization) and inert gas diffusion. At low bombardment doses (1011 ions/cm2) and energy (40 keV), no damage was observed and the gas release was compatible with volume diffusion resembling Group I and VIII behaviour. Hence, the pre-exponential terms, D 0, were low (range 10-5±1 cm2 sec?1) and the activation enthalpies, Δ H, were much lower than those of self-diffusion or of diffusion of Group III and V elements. The Δ H's for gas diffusion followed the relation Δ H = (1.05±0.1) × 10?3 Tm eV with the melting point, Tm , in °K. The mechanism of gas mobility might be the Turnbull dissociative mechanism. Rutherford scattering and channeling data indicated that part of the gas occupied lattice sites.

At higher doses, the bombarded layers turned amorphous. Channeling experiments showed a coincidence in temperatures for a gas release process different from the above one of volume diffusion, and recrystallization of the disordered layer to the single crystalline state. Both processes occurred in the temperature range 0.60 to 0.65 Tm . The gas release indicated a (partial) single jump character with implied Δ H's following the relation Δ H = (2.1±0.1) × 10?3 Tm eV. Contrary to previous results on oxides, this new gas release occurred at temperatures near to those or even above those of volume diffusion of the gas.

Due to the easy formation of an amorphous layer it was difficult to observe the retarded release (trapping of gas) that has been found in many materials at high gas and damage concentrations. However, in a separate series of experiments with 500 keV Kr-ions, a release retarded with respect to volume diffusion of the gas was observed in Si and Ge.  相似文献   

9.
Electrostatic discharges obtained upon the irradiation of K-208 glass with 40-keV electrons at a flux density φ of 1010 to 2 × 1011 cm–2 s–1 are studied. The residual pressure p v in the vacuum chamber is varied from 5 × 10–5 to 5 × 10–3 Pa. Structural changes in the sample surfaces are studied by atomic-force microscopy. Depending on the pressure level, two types of discharges are observed in experiments at 3 × 1010 ≤ φ ≤ 1.2 × 1011 cm–2 s–1: a microprojection at the glass–ionized-residual-atmosphere surface and a discharge which develops along the irradiated surface. It is found that at 5 × 10–5p v ≤ 3 × 10–4 Pa and 8 × 1010 ≤ φ ≤ 1011 cm–2 s–1, discharges of the first type appear at the beginning of exposure; that is, an increase in microprojections is observed. Further, surface discharges propagate through these microprojections. At 10–3p v ≤ 5 × 10–3 Pa and 1010 ≤ φ ≤ 5 × 1010 cm–2 s–1, on the contrary, discharges of the second type are realized at the beginning. These discharges result in the appearance of channels with inhomogeneities on the glass, at which subsequently discharges of the first type occur. It is determined by calculations that in the region adjacent to the exposed glass surface, secondary electrons accelerated in a field of charge accumulated in the glass make the main contribution to the ionization of gases.  相似文献   

10.
11.
A dual mode (TM010 cylindrical cavity/cylindrical waveguide) microwave apparatus is used to study the ion mobility and dissociative recombination of molecular argon ions with electrons in the afterglow period of a d.c. glow discharge as a function of electron temperature when electrons were heated by microwaves up to Te ≤ 10300K, with T+ = Tgas = 300K. The electron temperature dependence of the total rate coefficient of dissociative recombination may be represented by α (Ar+2) = (8.1 ± 0.5) × 10–7[300/Te(inK)]0.64cm3s–1 which is in very good agreement with most previous experimental results but not with the recent theoretical calculations (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Influence of In3+ ions on electrochemical performance of positive electrolyte for vanadium redox flow battery was investigated in this paper. The electrochemical activity and kinetics of V(IV)/V(V) redox couple can be enhanced by the addition of In3+ ions, and the optimal concentration of In3+ ions was found at 10 mM. At this condition, the oxidation peak current with 10 mM In3+ ions is 46.6 mA at a scan rate of 20 mV s?1, larger than that of pristine electrolyte (41.8 mA), and the standard rate constant is 6.53?×?10?5 cm s?1, 42 % larger than that of the pristine electrolyte (4.58?×?10?5 cm s?1). The cell using electrolyte with 10 mM In3+ ions was assembled, and the charge–discharge performance was evaluated, and the average energy efficiency increases by 1.9 % compared with the pristine cell. The improved electrochemical performance may be ascribed to that In3+ ions change the hydration state of vanadium ions in electrolyte and promote charge transfer process.  相似文献   

13.
Discharges with liquid nonmetallic electrodes of much interest for applications are investigated. It is found that a dc discharge between two streams of tap water in air at atmospheric pressure is stable at a currentof 40≤I≤100 mA. The discharge exists in the diffuse (volume) form with a relatively low current density (∼0.2 A/cm2) and a high (above one kilovolt) voltage drop across the air gap (∼1 cm) between the water electrodes. The current density and voltage depend only slightly on the discharge current. Probe measurements show that three regions can be distinguished in the discharge: two electrode regions (1–2 mm in length) and a discharge column with a constant electric field of ≈0.8 kV/cm (i.e., E/N≈20 Td, because the gas in the discharge is heated up to 1500–2000 K). The average electric field strength near the electrodes is E≈2–3×103 V/cm (E/N≈60–80 Td). The charged particle density in the column is n ∼ 1012 cm−3. The probe measurements of n agree with the previous microwave absorption measurements. The water vapor concentration in the column is also estimated from probe measurements.  相似文献   

14.
The last generation of micromegas, called microbulk, are ahead of classical gas detectors (or even other kind of micro‐pattern gas detectors) in gain stability, efficiency (by operation at high pressure), simplicity, robustness, energy resolution, readout features and radiopurity. This makes them a competent solution in the field of Rare Event Searches, a field where low background is the most appreciated feature of a detector. The CAST (CERN Axion Solar Telescope) experiment is the best example of their application in the X‐rays range. In CAST, these detectors have achieved background rates as low as 6 × 10?6 counts keV?1 cm?2 s?1. Beyond this nominal operation, there have been several periods where the background has been reduced to a level of 2 × 10?7 counts keV?1 cm?2 s?1, due to reasons which are under investigation. The CAST experiment will be presented, paying special attention to their microbulk micromegas, as well as the procedures to achieve low background. Latest news about the operation of these kinds of detectors for the first time in underground conditions will be advanced here. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The hydrogen abstraction reaction of triplet 4-methoxybenzophenone with thiophenol at 265 K has been studied with a newly developed picosecond laser flash photolysis apparatus under magnetic fields of 0–1.7 T. The decay rate constant of the radical pair generated was found to increase from 3.42 × 109 s?1 to 4.15 × 109 s?1 with increasing the magnetic field from 0 to 1.7 T. The observed magnetic field effects can be explained by the Δg mechanism. Using the simple kinetics model with the Δg mechanism, the rate constant of the escape process from the pair (k esc) and two rate constants for the T-S spin conversion process (k T-S) at 0 and 1.7 T were found to be 1.97 × 109 s?1, 1.45 × 109 s?1, and 2.12 × 109 s?1, respectively. From the magnetic field dependence on k T-S, the difference in the g values of the 4-methoxybenzophenone ketyl and phenylthiyl radicals was estimated to be 0.0087.  相似文献   

16.
The current/voltage characteristics of a cylindrical Langmuir probe have been studied in Ar+/electron afterglow plasmas in helium carrier gas under truly thermal conditions at 300 K using our flowing afterglow/Langmuir probe (FALP) apparatus. The orbital motion limited (oml) ion and electron current regions of the probe characteristics have been explored over a wide range of the reduced probe voltage (up to ~ 100) and over a wide range of electron (ne) and ion (n+) number densities (1.6 × 107 to 1.5 × 1010 cm?3) at a constant pressure of the He carrier gas of 1.2 Torr. The observed increase of the probe ion currents above those predicted by collisionless oml theory, resulting in an apparent increase of the measured ion number density above ne in the plasma, is explained by the enhancement in the ion current collection efficiency due to collisions of ions with neutral gas atoms in the space charge sheath surrounding the probe. The continuous change in the exponent, χ, of the power-law dependence,i+V of the ion current, i+, on the probe voltage, Vp from 0.5 at the highest n+ (smallest sheath) towards 1.0 at the lowest n+ (large sheath) indicates that the ion current collection from the plasma changes from the oml current regime at the high n+ to the continuum regime at the low n+ when the ions undergo multiple collisions with the helium atoms in the space charge sheath and thus “drift” towards the probe.  相似文献   

17.
18.
The spatial distribution of ozone and of oxygen atoms was studied along the active and the passive zone of a dc discharge (positive column, pressure: p = (4 … 10) · 102 Pa, current: I = 2 … 50 mA, flow rate: F = 5 … 100 sccm) in flowing oxygen. The composition of the final output O2/O3-mixture is controlled by relaxation processes in the passive reactor zone. It is affected sensitively by the total number density and the gas temperature in the afterglow. Steady states meaning reversible chemical quasi-equilibria were observed and analysed extensively. Within a detailed kinetic model the formation of these equilibria can be explained quantitatively. The synthesis to ozone is controlled above all by the metastable O2 (a1Δg) species, which modify drastically the results for the basic mechanism, considering the O atoms in the 3P and 1D states.  相似文献   

19.
Absorption cross sections of argon for argon resonance radiation have been measured by several techniques. The apparent cross sections are small (0·1 to 1·6 × 10-18 cm2) for resonance absorption and the values depend on the technique used for measurement. These observations are interpreted in terms of extensive reversal and broadening in the source. The excitation and quenching of resonance fluorescence was studied to provide information about the rates of the processes

The rate constants were estimated relative to k r, the rate constant for radiation. Radiation imprisonment leads to a reduction of k r from its natural value and observations of the decay of resonance fluorescence suggest that k r ~ 1·5 × 105 s-1 in our system at [Ar] = 2 × 1017 atom cm-3. Combining this value with the relative values for the quenching rate constants gives k 1 < 1·5 × 10-13, k 1′(M = N2) ~ 6 × 10-12, k 1′(M = NO) ~ 4 × 10-10, in units of cm3 s-1 molecule-1.  相似文献   

20.
Water‐soluble naphthalene diimides (NDIs) have found uses in a wide variety of applications including as electron acceptors in electron transfer reactions and as molecules that undergo spontaneous organization in aqueous solution. Many studies have looked at their interaction with nucleic acids including work with DNA duplexes, triplexes, quadruplexes, hairpins, and DNA–RNA heteroduplexes. In many of these interactions the NDIs serve as threading intercalators. Herein we describe the reversible hydroxide‐catalyzed hydrolysis of NDIs bearing aliphatic side chains, with ring opening first to the monoimide and then to the diamide. Examples with N‐methylpyrrolidinium groups placed two ( 1 ) and three ( 5 ) atoms from the central core were studied. The Ka values for the first and second hydrolyses for 1 were 2.5 ± 0.2 × 105 and 2.0 ± 0.1 × 102 M?1, respectively; for 5 they were 1.4 ± 0.1 × 105 and 44 ± 2 M?1, respectively. NDI 1 hydrolyzed 6.8 times faster than 5 . The rates for the first and second ring opening of 1 in 100 mM hydroxide measured by stopped‐flow were 17.0 ± 0.2 and 0.53 ± 0.01 s?1, respectively. Capillary electrophoresis in borate buffer showed separation of the diimide and monoimide with the former eluting first. Nuclear magnetic resonance (NMR) showed both the syn and anti isomers of the diamide species. Overall, the rate of hydrolysis of the NDI is increased when the cationic charge is moved closer to the NDI core. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号