首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete in the nonlinear regime. Here the interaction of a centrifugal instability mechanism with the viscous mechanism which causes Tollmien-Schlichting waves is discussed. The interaction between these modes can be strong enough to drive the mean state; here the interaction is investigated in the context of curved channel flows so as to avoid difficulties associated with boundary layer growth. Essentially it is found that the mean state adjusts itself so that any modes present are neutrally stable even at finite amplitude. In the first instance the mean state driven by a vortex of short wavelength in the absence of a Tollmien-Schlichting wave is considered. It is shown that for a given channel curvature and vortex wavelength there is an upper limit to the mass flow rate which the channel can support as the pressure gradient is increased. When Tollmien-Schlichting waves are present then the nonlinear differential equation to determine the mean state is modified. At sufficiently high Tollmien-Schlichting amplitudes it is found that the vortex flows are destroyed, but there is a range of amplitudes where a fully nonlinear mixed vortex-wave state exists and indeed drives a mean state having little similarity with the flow which occurs without the instability modes. The vortex and Tollmien-Schlichting wave structure in the nonlinear regime has viscous wall layers and internal shear layers; the thickness of the internal layers is found to be a function of the Tollmien-Schlichting wave amplitude.  相似文献   

2.
The shape and properties of an infinite steady linear array of uniform vortices are calculated. A nonlinear singular integrodifferential equation is obtained for the shapes, which is solved numerically by Newton's method and Euler continuation to give a one parameter family of shapes as size over separation is varied. The kinematic properties and energy of the array are obtained. It is found that there exists an array of maximum area, for given separation, which also possesses minimum energy in accordance with a general argument of Kelvin. A simple model based on elliptical vortices is constructed, which reproduces the qualitative kinematic properties and is quantitatively quite accurate. Continuation of the numerical solution past the array of maximum area leads to a limit of finite, lens shaped, touching vortices. This array is also shown to be limit of a finite amplitude bifurcation of a vortex sheet of finite thickness. The stability of the array to two dimensional subharmonic and superharmonic disturbances is considered. General arguments, based on ideas of Kelvin, are given to show that the array is stable to superharmonic disturbances if the area is less than the maximum and otherwise unstable, and that it is always unstable to subharmonic disturbances, of which the pairing instability is a special case. It is verified by direct calculation in an Appendix that hollow vortices, whose shapes can be determined analytically in closed form, are unstable to the pairing instability whatever their size. Some speculations are made about the possible relevance of the results to the observed properties of organized structures in the turbulent mixing layer.  相似文献   

3.
A higher order extension to Moore's equation governing the evolution of a thin layer of uniform vorticity in two dimensions is obtained. The equation, in fact, governs the motion of the center line of the layer and is valid for consideration of motion whereby the layer thickness is uniformly small compared with the local radius of curvature of the center line. It extends Birkoff's equation for a vortex sheet. The equation is used to examine the growth of disturbances on a straight, steady layer of uniform vorticity. The growth rate for long waves is in good agreement with the exact result of Rayleigh, as required. Further, the growth of waves with length in a certain range is shown to be suppressed by making this approximate allowance for finite thickness. However, it is found that very short waves, which are quite outside the range of validity of the equation but which are likely to be excited in a numerical integration of the equation, are spuriously amplified as in the case of Moore's equation. Thus, numerical integration of the equation will require use of smoothing techniques to suppress this spurious growth of short wave disturbances.  相似文献   

4.
A thin viscous liquid film flow is developed over a stretching sheet under different non-linear stretching velocities in presence of uniform transverse magnetic field. Evolution equation for the film thickness is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. It is observed that all types of stretching produces film thinning, but non-monotonic stretching produces faster thinning at small distance from the origin. Effect of the transverse magnetic field is to slow down the film thinning process. Observed flow behavior is explained physically.  相似文献   

5.
A thin viscous liquid film flow is developed over a stretching sheet under different non-linear stretching velocities in presence of uniform transverse magnetic field. Evolution equation for the film thickness is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. It is observed that all types of stretching produces film thinning, but non-monotonic stretching produces faster thinning at small distance from the origin. Effect of the transverse magnetic field is to slow down the film thinning process. Observed flow behavior is explained physically.  相似文献   

6.
We revisit the classical problem of internal wave propagation in a stratified fluid layer bounded by rigid walls and point out a mechanism by which unsteady locally confined disturbances generate far-field shelves. Carrying the standard expansion procedure to fourth order in the wave amplitude reveals that weakly nonlinear long waves of a certain mode shed, in general, lower- and higher-mode shelves, which propagate upstream and downstream with the corresponding long-wave speeds. This phenomenon is brought about by the combined effect of nonlinear interactions and the presence of transience in the main disturbance. While the shelves accompanying small-amplitude waves are relatively weak, numerical solutions of the full Euler equations indicate that shelves induced by unsteady disturbances of finite amplitude close to breaking can be quite significant.  相似文献   

7.
A thin viscous liquid film flow is developed over a stretching sheet under different nonlinear stretching velocities. An evolution equation for the film thickness, is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. A comparison is made with the analytic solution obtained in [B. S. Dandapat, A. Kitamura, B. Santra, “Transient film profile of thin liquid film flow on a stretching surface”, ZAMP, 57, 623-635 (2006)]. It is observed that all types of stretching produce film thinning but non-monotonic stretching produces faster thinning at small distance from the origin. The velocity u along the stretching direction strongly depends on the distance along the stretching direction and the Froude number.  相似文献   

8.
A thin viscous liquid film flow is developed over a stretching sheet under different nonlinear stretching velocities. An evolution equation for the film thickness, is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. A comparison is made with the analytic solution obtained in [B. S. Dandapat, A. Kitamura, B. Santra, “Transient film profile of thin liquid film flow on a stretching surface”, ZAMP, 57, 623-635 (2006)]. It is observed that all types of stretching produce film thinning but non-monotonic stretching produces faster thinning at small distance from the origin. The velocity u along the stretching direction strongly depends on the distance along the stretching direction and the Froude number.  相似文献   

9.
Using the forced Korteweg-de Vries equation as a simple model, a perturbation procedure is presented for calculating the amplitude of short-scale oscillatory tails induced by steady long-wave disturbances. In the limit of weak dispersion, these tails have exponentially small amplitude that lies beyond all orders of the usual long-wave expansion. It is demonstrated that by working in the wavenumber domain, the tail amplitude can be determined quite simply, without the need for asymptotic matching in the complex plane. The induced short-wave tail is sensitive to the details of the long-wave profile. The proposed technique is applicable to nonlocal solitary waves and to other problems that require the use of exponential asymptotics.  相似文献   

10.
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer–Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.  相似文献   

11.
Using a nonlinear critical layer analysis, we examine the behavior of disturbances to the Holmboe model of a stratified shear layer for Richardson numbers 0相似文献   

12.
A model equation somewhat more general than Burger's equation has been employed by Herron [1] to gain insight into the stability characteristics of parallel shear flows. This equation, namely, ut + uuy = uxx + uyy, has an exact solution U(y) = ?2tanh y. It was shown in [1] that this solution is linearly stable, and more recently, Galdi and Herron [3] have proved conditional stability to finite perturbations of sufficiently small initial amplitude using energy methods. The present study utilizes multiple-scaling methods to derive a nonlinear evolution equation for a long-wave perturbation whose amplitude varies slowly in space and time. A transformation to the heat-conduction equation has been found which enables this amplitude equation to be solved exactly. Although all disturbances ultimately decay due to diffusion, it is found that subcritical instability is possible in that realistic disturbances of finite initial amplitude can amplify substantially before finally decaying. This behavior is probably typical of perturbations to shear flows of practical interest, and the results illustrate deficiencies of the energy method.  相似文献   

13.
We describe a pseudo-spectral numerical method to solve the systems of one-dimensional evolution equations for free surface waves in a homogeneous layer of an ideal fluid. We use the method to solve a system of one-dimensional integro-differential equations, first proposed by Ovsjannikov and later derived by Dyachenko, Zakharov, and Kuznetsov, to simulate the exact evolution of nonlinear free surface waves governed by the two-dimensional Euler equations. These equations are written in the transformed plane where the free surface is mapped onto a flat surface and do not require the common assumption that the waves have small amplitude used in deriving the weakly nonlinear Korteweg–de Vries and Boussinesq long-wave equations. We compare the solution of the exact reduced equations with these weakly nonlinear long-wave models and with the nonlinear long-wave equations of Su and Gardner that do not assume the waves have small amplitude. The Su and Gardner solutions are in remarkably close agreement with the exact Euler solutions for large amplitude solitary wave interactions while the interactions of low-amplitude solitary waves of all four models agree. The simulations demonstrate that our method is an efficient and accurate approach to integrate all of these equations and conserves the mass, momentum, and energy of the Euler equations over very long simulations.  相似文献   

14.
Author to whom correspondence should be addressed Recent theoretical work by Hall & Seddougui (1989) has shownthat strongly nonlinear high-wavenumber Görtler vorticesdeveloping within a boundary layer flow are susceptible to asecondary instability which takes the form of travelling wavesconfined to a thin region centred at the outer edge of the vortex.This work considered the case in which the secondary mode couldbe satisfactorily described by a linear stability theory, andin the current paper our objective is to extend this investigationof Hall & Seddougui (1989) into the nonlinear regime. Wefind that, at this stage, not only does the secondary mode becomenonlinear, but it also interacts with itself so as to modifythe governing equations for the primary Görtler vortex.In this case, then, the vortex and the travelling wave driveeach other, and indeed the whole flow structure is describedby an infinite set of coupled nonlinear differential equations.We undertake a Stuart-Watson type of weakly nonlinear analysisof these equations and conclude, in particular, that on thisbasis there exist stable flow configurations in which the travellingmode is of finite amplitude. Implications of our findings forpractical situations are discussed, and it is shown that thetheoretical conclusions drawn here are in good qualitative agreementwith available experimental observations.  相似文献   

15.
Large-amplitude Rossby waves riding on a background flow with a weak shear can be calculated up to a critical amplitude for which the meridional velocity, in a frame traveling with the wave, approaches zero at some point. Here we consider waves with an amplitude slightly greater than the critical amplitude by incorporating a region of recirculating fluid (vortex core) near this critical point. The effect of the vortex core is to introduce an extra nonlinear term into the equation for the wave amplitude proportional to the 3/2 power of the difference between the wave amplitude and the critical amplitude. The main effect due to the vortex core is a broadening of the wave profile. Furthermore, we show that the vortex core family has a limiting amplitude, with the limiting amplitude corresponding to a semi-infinite bore.  相似文献   

16.
Weakly nonlinear two-dimensional roll cells in Bnard convectionare examined in the limit as the wavenumber a of the roll cellsbecomes large. In this limit the second harmonic contributionsto the solution become negligible, and a flow develops wherethe fundamental vortex terms and the correction to the meanare determined simultaneously, rather than sequentially as inthe weakly nonlinear case. Extension of this structure to Rayleighnumbers O(a3) above the neutral curve is shown to be possible,with the resulting flow field having a form very similar tothat for strongly nonlinear vortices in a centripetally unstableflow. The flow in this strongly nonlinear regime consists ofa core region, and boundary layers of thickness O(a–1)at the walls. The core region occupies most of the thicknessof the fluid layer and only mean terms and cos az terms playa role in determining the flow; in the boundary layer all harmonicsof the vortex motion are present. Numerical solutions of thewall layer equations are presented and it is also shown thatthe heat transfer across the layer is significantly greaterthan in the conduction state.  相似文献   

17.
超音速尖锥边界层中扰动演化特征的数值研究   总被引:3,自引:3,他引:0  
采用高精度紧致格式, 对超音速尖锥边界层中二维扰动的空间演化, 进行了直接数值模拟.结果表明,虽然尖锥边界层流动存在一定的锥面法向速度,但小扰动的幅值及相位的演化都与由平行流假设得到的线性理论结果吻合.还研究了有限幅值扰动的演化,给出了其演化规律.并在扰动幅值增长到一定值时,发现了小激波.  相似文献   

18.
抛物化稳定性方程在可压缩边界层中应用的检验   总被引:3,自引:0,他引:3  
用抛物化稳定性方程(PSE),研究了可压缩边界层中扰动的演化,并与由直接数值模拟(DNS)所得进行比较.目的在检验PSE方法用于研究可压缩边界层中扰动演化的可靠性.结果显示,无论是亚音速还是超音速边界层,由PSE方法和由DNS方法所得结果都基本一致,而温度比速度吻合得更好.对超音速边界层,还计算了小扰动的中性曲线.与线性稳定性理论(LST)的结果相比,二者的关系和不可压边界层的情况相似.  相似文献   

19.
Waves in parallel shear flows are found to have different characteristics depending on whether nonlinear or viscous effects dominate near the critical layer. In this paper a nonlinear theory is developed which gives rise to a class of disturbances not found in the classical viscous theory. It is suggested that the modes found from such an analysis may be of importance in the breakdown of laminar flow due to free stream disturbances.  相似文献   

20.
A thin shear layer moving from the trailing edge of a two-dimensional aerofoil section downstream can be interpreted as a curve of discontinuity for the tangential velocity and may be approximated by a vortex sheet in inviscid, incompressible fluid flow. It is well known that vortex sheets are subject to instabilities of Kelvin-Helmholtz type which lead to roll-up phenomena in the wake. The motion of such sheets is governed by the Birkhoff-Rott equation. In the case of Kelvin-Helmholtz instability it seems clear that a curvature singularity occurs at a certain critical time and that consistent discretizations of the Birkhoff-Rott equation may fail to yield reliable results even before the time of occurrence of a singularity. We discuss the modification of the Biot-Savart kernel in the sense of Krasny who regularized the kernel by means of a global parameter. Using discrete Fourier transform we show the damping influence of this regularization technique. We modify the kernel carefully by introducing a regularization found in ordinary vortex methods and show that reliable results may be obtained up to and slightly after the singularity formation without increasing the accuracy of the computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号