首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Li2Br(NH2): The First Ternary Alkali Metal Amide Halide The pseudobinary system LiNH2/LiBr was investigated by X-ray methods. The crystal structure of the compound Li2Br(NH2) was solved by single crystal data: Li2Br(NH2): Pnma, Z = 8, a = 12.484(2) Å, b = 7.959(1) Å, c = 6.385(1) Å, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 348, Z (parameter) = 51, R/Rw = 0.019/0.021 Li2Br(NH2) crystallizes in a new type of structure. To one another isolated chains of [Li2Li4/2(NH2)22+] show the motif of closest rod packing. They are connected via bromide ions in a distorted cubic primitive arrangement.  相似文献   

2.
Synthesis and Crystal Structure of Manganese(II) and Zinc Amides, Mn(NH2)2 and Zn(NH2)2 Metal powders of manganese resp. zinc react with supercritical ammonia in autoclaves in the presence of a mineralizer Na2Mn(NH2)4 resp. Na2Zn(NH2)4_.0.5NH3 to well crystallized ruby‐red Mn(NH2)2 (p(NH3) = 100 bar, T = 130°C, 10 d) resp. colourless Zn(NH2)2 (p(NH3) = 3.8 kbar, T = 250°C, 60 d). The structures including all H‐positions were solved by x‐ray single crystal data: Mn(NH2)2: I41/acd, Z = 32, a = 10.185(6) Å, c = 20.349(7) Å, N(Fo) with F > 3σ (F) = 313, N(parameter) = 45, R/Rw = 0.038/0.043. Zn(NH2)2: I41/acd, Z = 32, a = 9.973(3) Å, c = 19.644(5) Å, N(Fo) with F > 3σ (F) = 489, N(parameter) = 45, R/Rw = 0.038/0.043. Both compounds crystallize isotypic with Mg(NH2)2 [1] resp. Be(NH2)2 [2]. Nitrogen of the amide ions is distorted cubic close packed. One quarter of tetrahedral voids is occupied by Mn2+‐ resp. Zn2+‐ions in such an ordered way that units M4(NH2)6(NH2)4/2 occur. The H‐atoms of the anions have such an orientation that the distance to neighboured cations is optimum.  相似文献   

3.
K2Br(OH) and Rb2Br(OH): Two New Ternary Alkali Metal Halide Hydroxides with a Pronounced Structural Relationship to KOH resp. RbOH Two isotypic compounds K2Br(OH) and Rb2Br(OH) were prepared in the systems KOH/KBr and RbOH/RbBr. Their structures were determined by single crystal X-ray methods: K2Br(OH): P21/m, Z = 2, a = 6.724(1) Å, b = 4.272(4) Å, c = 8.442(2) Å, β = 108.14(2)°, Z(Fo) = 651 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.041/0.047 Rb2Br(OH): P21/m, Z = 2, a = 6.918(3) Å, b = 4.483(2) Å, c = 8.850(5) Å, β = 108.08(6)°, Z(Fo) = 326 mit (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 27, R/Rw = 0.074/0.082. The compounds are built up by chains of [M2(OH)+] connected via Br?. The structure of the chains as well as their orientation to one another show a pronounced relationship to the structures of the room temperature modifications of the isotypic binary hydroxides KOH and RbOH.  相似文献   

4.
Na5Br(OH)4: Synthesis and Structure of a Compound in the System NaOH/NaBr The pseudobinary system NaOH/NaBr is investigated by X-ray methods. The structure of the compound Na5Br(OH)4 was solved by single crystal data: Na5Br(OH)4: Pnma, Z = 8, a = 11.846(2) Å, b = 18.782(4) Å, c = 6.431(1) Å, Z(Fo) = 1 202 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 100, R/Rw = 0.030/0.035 The compound crystallizes in a new type of structure. Pairs of octahedra around O by 5 Na and 1 H to [Na5(OH)]2 are orientated in such a way to one another that two ions OH? form a parallelogram hinting to unusual bent hydrogen bridge bonding.  相似文献   

5.
Synthesis and Crystal Structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an Adamantane-like Anion [P4(NH)6N4]4? Crystals of Na10[P4(NH)6N4](NH2)6(NH3)0.5 were obtained by the reaction of P3N5 with NaNH2 (molar ratio 1:20) within 5 d at 600°C in autoclaves. The following data characterize X-ray investigations: Fm3 m, Z = 8, a = 15.423(2) Å, Z(F) = 261 with F ≥ 3 σ(F) Z(Variables) = 27, R/Rw = 0.086/0.089 The compound contains the hitherto unknown anion [P4(NH)6N4]4?, which resembles adamantane. The total structure can be described as follows: The centers of gravity of units of [Na8(NH2)6(NH3)]2+ – 8Na+ on the corners of a cube, 6NH2? on the ones of an inscribed octahedron with NH3 in the center – follow the motif of a cubic-closest packed arrangement. Units of [Na12(NH2)6]6+ – 12Na+ on the corners of a cuboctahedron and 6NH2? on the ones of an inscribed octahedron – occupy all octahedral and those of [P4(NH)6N4]4? all tetrahedral sites.  相似文献   

6.
Na2Mn(NH2)4: A New Type of Layered Structure The structure of Na2Mn(NH2)4 was solved by X-ray single crystal data including H-positions: P21/c, Z = 4, a = 6.331(1) Å, b = 14.542(3) Å, c = 7.212(1) Å, β = 116.29(1)°, Z(F ≥ 3σ = (F)) = 1343, Z(parameters) = 96, R/RW = 0.023/0.029. The compound crystallizes in a new type of structure. Within layered blocks the amide ions are arranged with the motif of a hexagonal closest packing of spheres. Within these blocks alternating layers contain sodium in all octahedral sites and manganese in an ordered way in a quarter of tetrahedral sites.  相似文献   

7.
Synthesis and Crystal Structure of Sodium Tetraoxo Nitrido Tungstate(VI), Na5WO4N Colourless crystals of Na5WO4N are obtained besides Na4WO2N2 [1] by the reaction of WO3 with NaNH2 (15:1) at 350°C ≥ T ≥ 750°C in autoclaves to prevent early decomposition of sodium amide. X-ray single crystal investigations are characterized by the following data:
  • Na5WO4N: Cmc21 (No. 36), Z = 4
  • a = 9.873(2) Å, b = 5.769(1) Å, c = 10.648(2) Å
  • Z(F)≥ 3σ(F) = 2182, Z(Var.) = 55, R/Rw = 0.029/0.039
The structure contains the tetragonal pyramidal ion WO4N5? with nitrogen at the apex connected via Na+ ions irregularly coordinated by one nitrogen and four oxygen atoms of different anions.  相似文献   

8.
Rb2I(OH): A Hydroxide Iodide in the System RbOH/RbI The pseudobinary system RbOH/RbI was investigated by X-ray methods. The crystal structure of Rb2I(OH) was solved by single crystal data: Rb2I(OH): Pnma, Z = 4, a = 7.748(1) Å, b = 5.654(2) Å,c = 13.254(2) Å Z(Fo) with (Fo)2 ? 3σ = (Fo)2 = 449, Z (parameter) = 25, R/Rw = 0.021/0.023 Rb2I(OH) crystallizes in a new type of structure, built up by a three dimensional network of [Rb2(OH)+] containing the iodide ions.  相似文献   

9.
Synthesis and Crystal Structure of a Cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4] · 2 CsNH2 Well crystallized Cesium-tetraimidophosphate-diamide is obtained by the reaction of CsNH2 with P3N5 in autoclaves at 673 K within three days. X-ray single crystal investigations led to the following data
  • Ccca, Z = 4, a = 8.192(5) Å, b = 20.472(5) Å,
  • c = 8.252(3) Å
  • Z(F) ≥3σ(F) = 916, Z(Var.) = 32, R/Rw=1 = 0.017/0.021
The compound contains the hitherto unknown anion [P(NH)4]3?.  相似文献   

10.
Synthesis and Structure of an Ammonium Diamidodioxophosphate(V), NH4PO2(NH2)2 The ammonolysis of P3N5 under ammonothermal conditions (T = 400°C, p(NH3) = 6 kbar, 14 d in autoclaves) in the presence of small definite amounts of water leads to the formation of NH4PO2(NH2)2. The structure was solved by single crystal X-ray methods. NH4PO2(NH2)2: P21/c (Nr. 14), a = 6.886(1) Å, b = 8.366(2) Å, c = 9.151(2) Å, β = 111.78(3)°, Z = 4, R1/wR2 = 0.026/0.072, Z(F > 2σ(F)) = 1183, N(variables) = 87. In NH4PO2(NH2)2 the anions [PO2(NH2)2]? are linked to chains by N? H …? N and N? H …? O bridge bonds. The ammonium ions are located between these chains and are donors for N? H …? O bridge bonds which connect the chains three-dimensionally.  相似文献   

11.
Tetraammine Lithium Cations Stabilizing Phenylsubstituted Zintl-Anions: The Compound [Li(NH3)4]2[Sn2Ph4] Ruby-red, brittle single crystals of [Li(NH3)4]2[Sn2Ph4] were synthesized by the reaction of diphenyltin dichloride and metallic lithium in liquid ammonia at ?35°C. The structure was determined from X-ray singlecrystal diffractometer data: Space group, P1 , Z = 1, a = 9.462(2) Å, b = 9.727(2) Å, c = 11.232(2) Å, α = 66.22(3)°, β = 85.78(3)°, γ = 61.83(3)°, R1 (F ? 4σF) = 5.13%, wR2 (F02 ? 4σF) = 10.5%, N(F ? 4σF) = 779, N(Var.) = 163. The compound contains to Sb2Ph4 isosteric centres [Sn2Ph4]2? as anions which are connected to rods by lithium cations in distorted tetrahedral coordination by ammonia. These rods are arranged parallel to one another in the b,c-plane, but stacked along [100].  相似文献   

12.
The reaction of VI2 or TiI3, respectively, with ammonia in the presence of traces of water or oxygen, respectively, leads to [(NH3)5M? O? M(NH3)5]I4 · NH3 with M = V, Ti. Their structures were solved by X-ray single crystal data: Pbca (No. 61), Z = 4, M = V: a = 12.482(4) Å, b = 14.819(6) Å, c = 13.286(5) Å, N(F ? 3σF) = 983, N(variables) = 88, R/Rw = 0.053/0.063, M = Ti: a = 12.628(4) Å, b = 14.970(4) Å, c = 13.359(3) Å, N(F ? 3σF) = 1188, N(variables) = 88, R/Rw = 0.043/0.047. The structures consist of corner sharing octahedra double units [(NH3)5M? O? M(NH3)5]4+ with eclipsed conformation which are stacked together according to the motif of a distorted cubic face centered arrangement for the bridging oxygen atoms. IR spectroscopic investigations of the undeuterated vanadium compound and of 5% deuterated samples hint to N? H … I hydrogen bridge bonds and to remarkable π-bonding between the transition metal and the bridging oxygen atoms.  相似文献   

13.
Li2I(OH): A Compound with Onedimensional Infinite Edge Sharing [Li4/2(OH)+] Pyramids The pseudobinary system LiOH/LiI was investigated by X-ray methods. Two compounds, Li2I(OH) and Li5I(OH)4 exist. The structure of Li2I(OH) was solved by single-crystal data. For Li5I(OH)4 lattice constants and space group symmetry are given: Li2I(OH): Pnma, Z = 4, a = 10.339(4) Å, b = 5.567(1) Å, c = 6.643(2) Å, Z(Fo) mit (Fo)2 ≧ 3σ(Fo)2 = 439, Z (parameter) = 23, R/Rw = 0.030/0.040 Li5I(OH)4: Pmmn or P21mn(= Pmn21), Z = 2, a = 10.42 Å, b = 5.30 Å, c = 5.81 Å Li2I(OH) crystallizes in a new type of structure. The motif of a distorted hexagonal close-packed arrangement of iodide ions is penetrated by chains of [Li4/2(OH)+].  相似文献   

14.
Preparation, properties, and crystal structure of Na3[Yb(NH2)6] Na3[Yb(NH2)6] was prepared by the reaction of Na and Yb in the atomic ration 3:1 with ammonia at 150°C and 200 atm as a light grey microcrystalline powder. Colourless single crystals were obtained at 180°C and ~6000 atm. It decomposes rapidly at temperature above 140°C. At 250°C NaNH2 nd a nitride phase results which crystallizes in the Nacl lattice type with a = 4.86 Å. Na3[Yb(NH2)6] crystallizes orthorhombically with the lattice spacings a = 6.492 Å, b = 12.24 Å, and c = 21.33 Å with 8 formula units per unit cell. The space group is D–Pbca (No.61). The amide ions have a distorted close-packed arrangement with the layer sequence ABAC in the direction [010]. Ytterbium occupies on sixth, sodium one half of the octahedral interstices.  相似文献   

15.
Cs5[Na{W4N10}] was prepared from a mixture of NaNH2, CsNH2 and tungsten powder (molar ration 1 : 10 : 4) at 700°C in autoclaves. After the reaction is finished the nitride is embedded in an alkali metal matrix. Dark red crystals were isolated by washing out the alkali metal with liquid ammonia at room temperature. The structure of Cs5[Na{W4N10}] was solved by X-ray single crystal data: I41 (No. 80), Z = 4, a = 13.926(3) Å, c = 8.723(3) Å, Z(F) ≥ 3σ(F) = 1535, Z(Variables) = 63, R/Rw = 0.040/0.052. The compound is highly sensitive against moisture giving oxotungstates and ammonia. It contains a framework of tetrahedra [WNN3/21.5?]. Sodium shares four terminal nitrogen ligands. Including sodium a distorted, β-cristobalite type arrangement [Na{W4N10}5?] results. It contains caesium in all interstices formed by twelve nitrogen ligands in so-called Friauf polyhedra.  相似文献   

16.
Preparation and properties of the salts of the series MVO2F4, where M = NH, Na+, K+, 1/2 Ni2+, and 1/3 [Co(NH3)6]3+ are described. Molecular conductivity of Na3VO2F4 at different dilutions indicates that Na3VO2F4 dissociates into 3 Na+ and VOaF ions. Ion exchange study of (NH4)3VO2F4 solution through cation exchange resin (H+ form) suggests that the corresponding acid decomposes partly to vanadium pentoxide. Reaction between (NH4)3VO2F4 with BaCl2 and AgNO3 solutions shows the formation of BaVO2F3 and AgVO3 respectively. Thermogravimetric study of (NH4)3VO2F4 shows the formation of impure vanadium pentoxide as the ultimate product on heating up to 450°C. X-ray powder diffraction data are given for (NH4)3VO2F4 and Na3VO2F4.  相似文献   

17.
Unusual Coordination Polyhedra around Oxygen in Li4Cl(OH)3 The pseudobinary system LiOH/LiCl was investigated by X-ray methods. Two compounds, Li4Cl(OH)3 and Li2Cl(OH), were obtained. The crystal structure of Li4Cl(OH)3 solved by single-crystal methods is delt with. For Li2Cl(OH) powder diffraction data are given: Li4Cl(OH)3: P21/m, Z = 2, a = 5.4096(8) Å, b = 7.382(2) Å, c = 6.2076(8) Å, β = 94.40(1)°, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 483, Z (parameter) = 50, R/Rw = 0.022/0.025 Li2Cl(OH): Pmma, Z = 2, a = 7.680(8) Å, b = 4.001(7) Å, c = 3.899(6) Å The hydroxide rich compound crystallizes in a new type of structure which contains puckered layers [Li4(OH)3+] connected via chloride ions.  相似文献   

18.
Compounds in the Systems Potassium(Rubidium)/Gold/Antimony: K3Au3Sb2, Rb3Au3Sb2, and K1,74Rb0,26RbAu3Sb2 Brittle, silver coloured single crystals of K3Au3Sb2, Rb3Au3Sb2 and K1,74Rb0,26RbAu3Sb2 were obtainded by reaction of the alkali metal azides (KN3, RbN3) with gold and antimon powder at 550°C. The structures of the isotypic compounds (R3 m, Z = 3) were determined by X-ray single-crystal diffractometer data: K3Au3Sb2, a = 6,198(2) Å, c = 21,520(5) Å, R/Rw (w = 1) = 0,046/0,058, Z(F) ? 3σ(F) = 175, Z(Var.) = 14; Rb3Au3Sb2, a = 6,443(3), c = 21,69(2), R/Rw (w = 1) = 0,059/0,082, Z(F) ? 3σ(F02) = 258, Z(Var.) = 14; K1,74Rb0,26RbAu3Sb2, a = 6,288(2) Å, c = 21,617(5) Å, R/Rw (w = 1) = 0,049/0,069, Z(F) ? 3σ(F) = 390, Z(Var) = 14. The compounds crystallize with the K3Cu3P2-structure type. The Au? Sb partial structures consist of [AuSb2/3] layers with linear Sb? Au? Sb dumb-bells and SbAu3 pyramids. The layers are separated by two crystallographically independent alkali metal atoms along [001].  相似文献   

19.
Lithium Triamidostannate(II), Li[Sn(NH2)3] – Synthesis and Crystal Structure Rusty-red glistening, transparent crystals of Li[Sn(NH2)3] were obtained by reaction of metallic lithium with tetraphenyl tin in liquid ammonia at 110 °C. The structure was determined from X-ray single-crystal diffractometer data: Space group P 21/n, Z = 4, a = 8.0419(9) Å, b = 7.1718(8) Å, c = 8.5085(7) Å, β = 90.763(8)°, R1 (F o ≥ 4σ(F o)) = 2.8%, wR2 (F ≥ 2σ(F )) = 5.3%, N(F ≥ 2σ(F )) = 1932, N(Var.) = 65. The crystal structure contains trigonal pyramidal complex anions [Sn(NH2)3] with tin at the apex, which are connected to layers of sequence A B A B … by lithium in tetrahedra-double units [Li(NH2)2/2(NH2)2]2.  相似文献   

20.
RbLi(NH2)2 and the fully deuterated compound are obtained in autoclaves by the reaction of RbNH2/RbND2 and Li metal in supercritical NH3/ND3 (470 K, 220 Mpa, 41 d). X‐ray single crystal and neutron powder diffraction led to a new type of crystal structure closely related to the ThCr2Si2type. It is an orthorhombic distorted variant with an ordered half occupation by lithium on tetrahedral sites of puckered 44 nets of amide ions to{[Li(NH2)1/1(NH2)3/3]} units and fully filled up sites of CN = 8 by Rb. The compound crystallizes in the space group Pnma with Z = 4 and a = 7.772 (2)Å, b = 3.843 (1)Å, c = 11.583 (2)Å. It contains an unexpected hydrogen bridge bonding system between crystallographic different amide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号