首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Zinc Iodates – Infrared and Raman Spectra, Crystal Structure of Zn(IO3)2 · 2 H2O The zinc iodates Zn(IO3)2 · 2 H2O and Zn(IO3)2 as well as α‐Co(IO3)2 · 2 H2O were studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure of the dihydrate, which is isostructural with the respective cobalt compound, was determined by X‐ray single‐crystal studies (space group P1, Z = 2, a = 490,60(4), b = 667,31(5), c = 1088,85(9) pm, α = 98,855(6), β = 91,119(7), and γ = 92,841(6)°, R1 = 2,55%, 2639 unique reflections I > 2σ(I)). Transconfigurated Zn(IO3)4(H2O)2 octahedra are threedimensionally connected via common IO3 ions parallel to [001] and hydrogen bonds parallel to [100] and [010], respectively. Anhydrous Zn(IO3)2 crystallizes in space group P21 (Z = 2) with a = 548,9(2), b = 512,4(1), c = 941,8(2) pm, and β = 90,5(3)°. The structure of Zn(IO3)2 is a monoclinically distorted variant of the structures of β‐Ni(IO3)2 (space group P63) and Co(IO3)2 (P3). The O–H … O–IO2 hydrogen bonds of the crystallographically different H2O molecules of the dihydrates (νOD (OD stretching modes of isotopically dilute samples) 2430, 2415, 2333 and 2300 cm–1, Zn(IO3)2 · 2 H2O, 90 K) are examples to the matter of fact that O … O distances are only a bad measure for the strength of hydrogen bonds. The infrared and Raman spectra as well as a group theoretical treatment are presented and discussed with respect to mutual exclusion principle (possible space groups), the strength of the hydrogen bonds and the distortion of the IO3 ions at the C1 lattice sites.  相似文献   

2.
Crystal Structure, Infrared and Raman Spectra of Copper Trihydrogenperiodate Monohydrate, CuH3IO6 · H2O The hitherto unknown compound CuH3IO6 · H2O was studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure was determined by X‐ray single‐crystal studies (space group P212121, Z = 4, a = 532.60(10), b = 624.00(10), c = 1570.8(3) pm, R1 = 1.85%, 1559 unique reflections (I > 2σ(I))). Isolated, meridionally configurated H3IO62– ions are coordinated to the copper ions forming double‐ropes in [100]. These ropes are connected in [010] and [001] by hydrogen bonds. The copper ions possess a square pyramidal co‐ordination with the hydrate H2O on top. The infrared and Raman spectra as well as group theoretical treatment are presented and discussed with respect to the strength of the hydrogen bonds and the co‐ordination of the CuO5(+1) polyhedra and the H3IO62– ions at the C1 lattice sites. The hydrogen bonds of the H2O molecules and H3IO62– ions (HO–H…O–IO5H3 and H2IO5O–H…O–IO5H3) greatly differ in strength, as shown from both the respective O…O distances: 282.6 and 298.6 pm (H2O), and 258.8, 259.7, and 270.9 pm (H3IO62–) and the OD stretching modes of isotopically dilute samples: 2498 and 2564 cm–1 (90 K) (HDO), and 1786, 2024, and 2188 cm–1 (H2DIO62–). The IO stretching modes of the H3IO62– ions (696–788 cm–1 and 555–658 cm–1, 295 K) display the different strength of the respective I–O and I–O(H) bonds (rI–O: 181.1–188.3 pm and 189.2–194.5 pm).  相似文献   

3.
Infrared and Raman Spectroscopy of the Isostructural Iodate Hydrates M(IO3)2 · 4 H2O (M = Mg, Ni, Co)-Crystal Structure of Cobalt Iodate Tetrahydrate The iodate tetrahydrates Mg(IO3)2 · 4 H2O, β-Ni(IO3)2 · 4 H2O, Co(IO3)2 · 4 H2O and their deuterated specimens were studied by X-ray, infrared and Raman spectroscopic methods. The title compounds are isostructural crystallising in the monoclinic space group P21/c (Z = 2). The crystal structure of Co(IO3)2 · 4 H2O (a = 836.8(5), b = 656.2(3), c = 850.2(5) pm and β = 100.12(5)°) has been refined by single-crystal X-ray methods (Robs = 3.08%, 693 unique reflections I0 > 2σ(I)). Isolated Co(IO3)2(H2O)4 octahedra form layers parallel (100). Within these layers, the two crystallographically different hydrate water molecules form nearly linear hydrogen bonds to adjacent IO3 ions (νOD of matrix isolated HDO of Co(IO3)2 · 4 H2O (isotopically diluted samples) 2443 (H3), 2430 (H2), and 2379 cm–1 (H1 and H4), –180 °C). Intramolecular O–H and intermolecular H…O distances were derived from the novel νOD vs. rOH and the traditional νOD vs. rH…O correlation curves, respectively. The internal modes of the iodate ions of the title compounds are discussed with respect to their coupling with the librations of the hydrate H2O molecules, the distortion of the IO3 ions, and the influence of the lattice potential.  相似文献   

4.
On the Hydrates M(HSeO3)2 · 4H2O (M = Mg, Co, Ni, Zn) – Crystal Structures, IR, Raman, and Thermoanalytical Investigations From aqueous solutions of M(HSeO3)2 single crystals of Mg(HSeO3)2 · 4H2O and of the hitherto unknown compounds Co(HSeO3)2 · 4H2O, Ni(HSeO3)2 · 4H2O and Zn(HSeO3)2 · 4H2O could be obtained. The crystal structures, X-ray powder, IR, Raman and thermoanalytical (DTA, TG, Raman heating) data are presented and discussed. The crystal data of the isotypic compounds are: monoclinic, space group C2/c, Z = 4, Mg: a = 1 464.6(2), b = 755.3(1), c = 1 099.9(1) pm, β = 126.59(1)°, V = 0.9769(1) nm3, Co: a = 1 462.5(2), b = 756.5(2), c = 1 102.2(2) pm, β = 126.53(1)°, V = 0.9798(2) nm3, Ni: a = 1 452.2(2), b = 751.0(1), c = 1 091.5(1) pm, β = 126.28(1)°, V = 0.9595(1) nm3, Zn: a = 1 468.3(2), b = 755.8(1), c = 1 103.1(1) pm, β = 126.79(1)°, V = 0.9804(2) nm3. The crystal structures consist of hexagonal packed [M(HSeO3)2 · 2H2O]n chains of [MO4(H2O)2] octahedra linked by Se atoms. They contain trigonal pyramidal SeO2OH?ions with “free” hydroxyl groups and also “free” molecules of water of crystallization. The hydroxyl groups build strong H-bonds (O? H …? O distances: 265–268 pm). The IR spectra show AB doublett bands in the OH stretching mode region of the hydroxyl groups. The water molecules of crystallization are linked to planar (H2O)4 tetramers by H-bonds with unusually short O? H …? O bond distances of 271–273 pm. DTA and TG measurements indicate that thermal decomposition results in the direct formation of the respective diselenite MSe2O5. Raman heating measurements show under quasi static conditions the intermediate formation of the anhydrous hydrogen selenites.  相似文献   

5.
Na2Mg(SO3)2 · 2H2O. A New Ternary Magnesium Sulfite. Crystal Structure, Thermoanalytical, I.R., and Raman Data Single crystals of the hitherto unknown Na2Mg(SO3)2 · 2 H2O have been obtained by crystallization from Mg(HSO3)2 solutions saturated with NaCl and with the technique of gel crystallization. The crystal structure of the triclinic Na2Mg(SO3)2 · 2 H2O (P1 , Z = 1, a = 752.4(1), b = 590.3(1), c = 517.8(1) pm, α = 106.25(1), β = 109.80(1), and γ = 101.49(1)°) has been determined using single crystal X-ray diffraction data. The Mg? O distances of the nearly regular MgO6 octahedra are between 206.6 and 210.5 pm. The MgO6 octahedra are connected by sulfite bridges forming chains in [001], which are held together by strong hydrogen bridges. The SO32? ions have nearly C3v symmetry. The results of thermoanalytical and I.R. and Raman spectroscopic measurements are reported and discussed. The O? D stretching modes of HDO molecules in partially deuterated samples show that the water molecules differ strongly from C2v symmetry.  相似文献   

6.
NiH3IO6 · 6 H2O — Crystal Structures and Vibrational Spectra The crystal structure of NiH3IO6 · 6 H2O has been determined by X-ray single-crystal diffraction (Pc, Z = 2, a = 516.74(9), b = 981.5(2), c = 1052.5(2) pm, β = 116.496(8)°) on the basis of 4169 unique reflections (R = 1.96%). The structure is built up of distorted Ni(H2O)62+ and H3IO62? octahedra linked by hydrogen bonding. IR and Raman spectra of both the title compound and isostructural MgH3IO6 · 6 H2O as well as of deuterated specimens are given. There are up to 14 different OH(OD) modes in the spectra of isotopically dilute samples due to the 15 different hydrogen positions of the structure. The internal modes of the meridional H3IO62? ions (pseudo C2v symmetry) are discussed with respect to that double T-shaped entity, which gives rise to only two instead of 3I? O, I? O(H), and OH stretches in the IR and Raman spectra, i.e. the same as for facial (C3v) structured ions.  相似文献   

7.
Preparation and Crystal Structure of the First Mixed Alkalimetal Hydrogencarbonates NaA2[H(CO3)2] · 2H2O with A = K, Rb The new hydrogencarbonates NaK2[H(CO3)2] · 2H2O (Pnma, a = 934.07(13) pm, b = 789.31(10) pm, c = 1142.1(5) pm, VEZ = 842.0(4) · 106 pm3, Z = 4, R1 (I ? 2σ(I)) = 0.023, wR2 = 0.066 for 989 reflections) and NaRb2[H(CO3)2] · 2H2O (Pnma, a = 948.24(11) pm, b = 811.37(9) pm, c = 1189.0(2) pm, VEZ = 914.8(2) · 106 pm3, Z = 4, R1 (I ≤ 2σ(I)) = 0.031, wR2 = 0.077 for 1063 reflections) were prepared from aqueous solutions. The crystal structures were determined. The isostructural compounds contain dimeric, non centrosymmetric [H(CO3)2]3? anions. In NaK2[H(CO3)2] · 2H2O a short hydrogen bond (d(O … O) = 246.1(2) pm) with an asymmetric potential was detected. In NaRb2[H(CO3)2] · 2H2O a hydrogen bond with symmetric potential (d(O … O) = 247.8(5) pm) can be assumed. The IR-spectra of NaK2[H(CO3)2] · 2H2O and Na3[H(CO3)2] · 2H2O are compared.  相似文献   

8.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

9.
Polysulfonyl Amines. XLI. A Silver(I) Hydrate with an Unusual Composition: Characterization of Tetrakis(dimesylamido)aquatetrasilver(I) [Ag4(N)SO2CH3)2}4(H2O)] by X-Ray Diffraction and Thermal Analysis The title compound is obtained by crystallizing AgN(SO2CH3)2 from water at room temperature. Crystallographic data (at ?95°C): Triclinic space group P1 , a = 864.6(4), b = 1 211.2(5), c = 1 399.1(5) pm, α = 90.97(3), β = 90.90(3), γ = 98.25(4)°, V = 1.4496 nm3, Z = 2, Dx = 2.608 Mg m?3. The four independent silver atoms and the water molecule form zigzag chains Ag(1)-Ag(2)-(μ-H2O)-Ag(3) …? Ag(4) …? Ag(1′) with distances Ag(1)-Ag(2) 309.7, Ag(2)-O(w) 241.8, O(w)-Ag(3) 241.4, Ag(3) …? Ag(4) 342.9, Ag(4) …? Ag(1′) 361.4 pm. The catenated silver atoms are further connected by the dimesylamide anions acting as tridentate bridging (α-O, N, ω-O)-ligands. The resulting strands are interconnected into layers through one O(S)-Ag′ contact (247 pm) and one hydrogen bond O(w)-H(l) …? O′(S) per repeating unit. Between the layers, a weak O(S) …? Ag″ interaction (271 ptn) and a hydrogen bond O(w)-H(2) …? O(S) per repeating unit are observed. The silver atoms Ag(l) to Ag(4) display the coordination numbers 5 [NO,Ag(2), distorted trigonal bipyramid], 5[NO2,O(w)Ag(I), distorted trigonal bipyramid], 5[O4,O(w), trigonal bipyramid], and 2 + 1 (N2, li-near; plus a secondary Ag …? 0 contact). The dehydration of the title compound and a solid-solid phase transformation in anhydrous AgN(SO2CH3)2, were quantitatively investigated by thermoconductometry and time- and temperature-resolved X-ray diffractometry (TXRD).  相似文献   

10.
Lattice Vibration Spectra. LXIII. Be(IO3)2 · 4 H2O, a Hydrate with Unusual Bonding and Lattice Dynamics The IR and Raman spectra (4000–50 cm?1) of Be(IO3)2 · 4 H2O and of deuterated specimens are recorded at 90 and 300 K and discussed in terms of the unusual relations of the masses of the atoms involved and the large polarization power of the beryllium ions. Thus, the translatory modes of the Be2+ ions (BeO4 skeleton vibrations), the librations of the H2O molecules, and the internal vibrations of the IO3? ions in the spectral regions of 300–400 and 600–1000 cm?1 couple and coincide producing unusual vH/vD isotopic ratios of partly < 1. The H-bond donor strengths of the water molecules is so much increased (due to the very large ionic potential of Be2+ ions, viz. 49 e nm?1) (synergetic effect) that the H-bonds formed are similar in strength as those in hydrates of hydroxides with the very strong H-bond acceptor group OH? (vOD of matrix isolated HDO molecules 2 074 and 2 244 (H2O I) and 2 206 and 2 349 cm?1 (H2O II))  相似文献   

11.
Polysulfonyl Amines. XL. Preparation of Silver(I) Disulfonylamide Acetonitrile Complexes. Characterization of Tetraacetonitrilesilver(I) bis(dimesylamido)argentate(I) and (1,1,3,3-Tetraoxo-1,3,2-benzodithiazolido)acetonitrilesilver(I) by X-Ray Diffractometry and Thermal Analysis The following silver(I) disulfonylamides were prepared for the first time or by improved procedures: AgN(SO2CH3)2 ( 2a ); AgN(SO2C6H4-4-X)2 with X = F ( 2b ), Cl ( 2c ), Br ( 2d ), CH3 ( 2e ); silver(I) 1,2-benzenedisulfonimide AgN(SO2)2C6H4 ( 2f ). With acetonitrile, the salts 2a to 2e form (1/2) complexes AgN(SO2R)· 2 CH3CN ( 4a to 4e ), whereas 2f gives the (1/1) complex AgN(SO2)2C6H · CH3CN ( 4f ). The crystallographic data (at - 95°C) for the title compounds 4a and 4f are: 4a , space group C2/c, a = 1 967.6(4), b = 562.2(1), c = 2 353.0(5) pm, β = 102.21(2)°, V = 2.5440 nm3, Z = 4, Dx = 1.891 Mg m?3; 4f , space group P21/m, a = 741.5(3), b = 980.4(4), c = 756.6(3) pm, β = 99.28(2)°, V = 0.5428 nm3, Z = 2, Dx = 2.246 Mg m?3. 4a forms an ionic crystal [Ag(NCCH3)4][Ag{N(SO2CH3)2}2]? with a tetrahedrally coordinated silver atom (lying on a twofold axis) in the cation (225.3/225.7 pm for the two independent Ag? N distances, N? Ag? N 106.2—114.5°) and a linear-dicoordinated silver atom in the centrosymmetric anion (Ag? N 213.9 pm, two intraionic secondary Ag…O contacts 303.4 pm). 4f consists of uncharged molecules [C6H4(SO2)2N1AgN2CCH3] with crystallographic mirror symmetry (Ag? N1 218.8, Ag? N2 216.1 pm, N1? Ag? N2 174.3°), associated into strands by intermolecular secondary silver-oxygen contacts (Ag…O 273.8 pm, O…Ag…O 175.6, N? Ag…O 91.9/88.2°). The thermochemical behaviour of 4f was investigated using thermogravimetry, differential scanning calorimetry (DSC), time- and temperature-resolved X-ray diffractometry (TXRD), and solution calorimetry. The desolvation process occurs in the temperature range from 60 to 200°C and appears to be complex, although no crystalline intermediate could be detected. The desolvation enthalpy at 298 K was found to be + 26.8(4) kJ mol?1. 4a is desolvated in two steps at - 15 to 60°C and 60 to 95°C (DSC), suggesting the formation of AgN(SO2CH3) · CH3CN as an intermediate.  相似文献   

12.
On Hydrates of the Type MX2 · 1 H2O with M = Sr, Ba and X = Cl, Br, I. Crystal Structures of Strontium Chloride Monohydrate, SrCl2 · 1 H2O, and Strontium Bromide Monohydrate, SrBr2 · 1 H2O The structures of SrCl2 · 1 H2O, orthorhombic, Pnma, a = 1088.1(1), b = 416.2(1), c = 886.4(1) pm, Z = 4, dc = 2.92 Mg m?3, R = 0.052 for 755 reflections, and of SrBr2 · 1 H2O, orthorhombic, Pnma, a = 1146.4(1), b = 429,5(1), c = 922.9(1) pm, Z = 4, dc = 3.88 Mg m?3, R = 0.056 for 762 reflections have been determined from a Patterson synthesis and refined by Fourier and Least Squares methods. The structure consists of [SrX2 = H2O]n-layers normal to [100] and Sr? H2O? Sr? H2O-chains parallel [010]. The Sr? O distances are 265.1(3) pm, SrCl2 · 1 H2O, and 265.9(4) pm, SrBr2 · 1 H2O. The shortest Sr? Cl and Sr? Br distances (298.9(1) and 315.3(1) pm) are within the layers. The environment of oxygen and strontium is a distorted tricapped trigonal prism. The orientation of the water molecules has been determined from vibrational spectroscopic measurements. The hydrogen atoms H1 and H2 form bifurcated hydrogen bonds of different strength to neighbouring halide ions. The corresponding O···X distances are 331.9(4) and 320.2(4) pm, SrCl2 · 1 H2O, and 340.8(4) and 333.8(4) pm, SrBr2 · 1 H2O. The other O? X distances are between 310.3(5) and 323.7(5) pm, SrCl2 · 1 H2O, and 323.5(5) and 333.2(6) pm, SrBr2 · 1 H2O.  相似文献   

13.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

14.
Preparation, Crystal Structure and IR Spectra of BeSeO3 · H2O – Hydrogen Bonds and Correlation of IR and Structure Data in the Monohydrates MSeO3 · H2O (M = Be, Ca, Mn, Co, Ni, Zn, Cd) BeSeO3 · H2O (oP32) has been obtained by treating amorphous BeSeO3 · 4 H2O precipitated from Be(HSeO3)2 solutions hydrothermally at 150 °C. The crystal structure (P212121, a = 560.59(4), b = 755.25(5), c = 781.14(5) pm, Z = 4, DX = 3.092 gcm–3, R = 0.018 for the 2034 reflections with I > 2σI of the enantiomer investigated) contains BeO3(H2O) tetrahedra built up from three selenite and one water oxygen atoms. The BeO3(H2O) tetrahedra are 3 D‐connected via Se atoms of trigonal pyramidal SeO32– ions. The Be–O distances are 161.8 to 164.4 pm. The Se–O bond lenghts (169.2–170.3 pm) and the O–Se–O bond angles (98.1–101.4°) are normal. The water molecules of crystallization form together with the SeO32– ions screw‐like hydrogen bond systems along [100]. Despite the strong synergetic effect of the Be2+ ions, the hydrogen bonds (d(OH…O) = 267.4 and 276.4 pm, respectively; νOD of matrix isolated HDO molecules: 2244 and 2405 cm–1, respectively) are normal compared to other neutral selenite hydrates. Together with the hitherto known monohydrates MIISeO3 · H2O and other beryllium salt hydrates, the hydrogen bonds of BeSeO3 · H2O are discussed with regard to their geometry and IR spectroscopy.  相似文献   

15.
NH4[Re3Cl10(OH2)2] · 2 H2O: Synthesis and Structure. An Example for “Strong” N? H …? O and O? H …? Cl Hydrogen Bonding The red NH4[Re3Cl10(OH2)2] · 2 H2O crystallizes from hydrochloric-acid solutions of ReCl3 with NH4Cl. It is tetragonal, P41212, No. 92, a = 1157.6, c = 1614.5 pm, Z = 4. The crystal structure contains “isolated” clusters [Re3Cl10(OH2)2]?. These contain Cl…?H? O? H…?Cl units with “very strong” hydrogen bonds: distances Cl? O are only 286 pm. NH4+ has seven Cl? as nearest neighbours and, additionally, one H2O which belongs to a cluster [d(N? O1) = 271 pm] and one crystal water [d(N? O2) = 286 pm].  相似文献   

16.
On Copper‐tetrahydrogen‐decaoxo‐diperiodate‐hexahydrate CuH4I2O10·6H2O: Crystal Structure, Vibrational Spectroscopy and Thermal Analysis By crystallization from a strongly acidic aqueous solution copper‐tetrahydrogen‐decaoxodiperiodate‐hexahydrate CuH4I2O10· 6H2O has been obtained. In the structure of this compound (S.G. P 21/c, Nr.14), Z = 2, a = 1060.2(2) pm, b = 551.1(1) pm, c = 1164.7(2) pm, β = 111, 49(3)°) centrosymmetric [H4I2O10]2— anions in the form of two edge sharing octahedra form layers via hydrogen bonds originating from the acidic, trans‐configurated OH groups of the anions. Raman spectra are given and analyzed with respect to the internal vibrations of the periodate anion. The dehydration of the compound takes place via CuH4I2O10·3H2O and Cu(H2IO5)2 which decomposes at 170 °C to Cu(IO3)2.  相似文献   

17.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

18.
Dimethylsulfoxide Complexes of Beryllium(II) Chloride. Crystal Structures of [Be(OSMe2)4]Cl2, [Be(OSMe2)3(H2O)]Cl2 and [Be(OSMe2)2(H2O)2]Cl2 Single crystals of the mixed ligand complexes [Be(OSMe2)3(H2O)]Cl2 ( 2 ) and [Be(OSMe2)2(H2O)2]Cl2 ( 3 ) were obtained from saturated solutions of [Be(OSMe2)4]Cl2 ( 1 ) in acetonitrile and dichloromethane, respectively, in the presence of traces of water, while single crystals of 1 were available by reaction of the carbodiphosphorane complex [BeCl2{C(PPh3)2}] with DMSO/toluene solution. All complexes are characterized by X‐ray diffraction and IR spectroscopy. 1 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 962.4(1), b = 1888.8(2), c = 2115.8(2) pm, R1 = 0.0344. 1 consists of [Be(OSMe2)4]2+ cations with distorted tetrahedral coordination of the oxygen atoms of the DMSO molecules with Be–O distances of 161.9 pm on average, and chloride ions. 2 : Space group , Z = 2, lattice dimensions at 193 K: a = 903.9(2), b = 925.2(3), c = 1121.3(3) pm, α = 93.65(3)°, β = 108.03(3)°, γ = 115.20(3)°, R1 = 0.0472. 3 : Space group , Z = 2, lattice dimensions at 173 K: a = 788.2(2), b = 801.6(2), c = 1070.7(3) pm, α = 86.66(2)°, β = 83.80(2)°, γ = 71.00(2)°, R1 = 0.0699. 2 and 3 also form dications with distorted tetrahedral coordination of the Be2+ ions by the oxygen atoms of DMSO and water molecules, respectively. The chloride ions are associated by strong hydrogen bonds O–H···Cl to give three‐dimensional networks.  相似文献   

19.
Transition Metal Peroxofluoro Complexes. III. Preparation, Crystal Structure, and Vibrational Spectra of K6Ta3(O2)3OF13 · H2O Containing a m?-Oxo-diperoxo-octafluoroditantalate(V) Anion K6Ta3(O2)3OF13 · H2O has been prepared from solution and his crystal structure was determined by X-ray single crystal investigation: Space group Pnma, lattice constants a = 1 653.6 pm, b = 883.5 pm, c = 1 365.8 pm, Z = 4, R = 0.033. The compound yields [Ta(O2)F5]2? groups as well as m?-oxo-bridged [Ta2O(O2)2F8]4? anions with very diffrent O? O distances within the peroxo groups (139 pm vs. 164 and 175 pm) correlating well with the i.r. and Raman spectra. The different bonding in connection with an oxo-bridge is discussed.  相似文献   

20.
Colourless single crystals of [Hg(OH)](NO3)(H2O) were obtained by slow evaporation of an aqueous solution of Hg(NO3)2 and Bi(NO3)3. The crystal structure (orthorhombic, Pbca, Z = 8, a = 943.2(2), b = 697.6(1), c = 1349.0(2) pm, R1(all) = 0.0780) contains [Hg(OH)] = …OH–Hg–OH–Hg… zig zag chains (O–Hg–O angle: 168°, Hg–O–Hg angle: 112°, Hg–OH distance: 212 pm) to which one water molecule is attached loosely. The [Hg(OH)](H2O) chains are connected via bis‐monodentate‐bridging nitrate ions to corrugated layers that are stacked in the [001] direction. Hg2+ has an effective 2+2+2(+1) coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号