首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Mechanochromic organic materials are a typical class of stimuli materials that has response to external physical stimuli such as shearing, grinding, and compressing etc. Organic compounds with mechanochromic characters in solid forms have attracted significant attention in the past decades due to their potential applications in sensors and memory devices. Diamond anvil cell is an emerging technology that can provide isotropic pressure in a tiny place. Thus a new stimuli method can be applied in investigating optical variation of mechanochromic materials. In this review, we focus on mechanoluminescence systems that are responsive to isotropic compression under high pressure and summarize the recent advances on organic materials studied by the diamond anvil cell.  相似文献   

2.
Contrary to the conventional understanding that atomic clusters usually differ in properties and structure from the bulk constituents of which they are comprised, we show that even a dimer of tungsten oxide (WO(3))(2) possesses bulklike features and the geometry of a small cluster containing only 4 tungsten and 12 oxygen atoms bears the hallmarks of crystalline tungsten oxide, WO(3). This observation, based on a synergistic approach involving mass distributions under quasisteady state conditions, photoelectron spectroscopy, and first principles molecular orbital theory, not only illustrates the existence of a class of strongly covalent or ionic materials whose embryonic forms are tiny clusters but also lends the possibility that a fundamental understanding of complex processes such as catalytic reactions on surfaces may be achieved on an atomic scale with clusters as model systems.  相似文献   

3.
The ability to artificially structure new semiconductor materials on an atomic scale, using advanced crystal growth methods such as molecular beam epitaxy and metal organic chemical vapor deposition, has led recently to the observation of new physical phenomena as well as the creation of entirely new classes of devices based on band gap and wave function engineering. In these lectures an elementary introduction is given to the quantum aspects of these new structures.  相似文献   

4.
Toward the development of ionically controlled nanoscopic molecular gates   总被引:3,自引:0,他引:3  
An ionically controlled nanoscopic molecular gate has been developed by using functionalized mesoporous materials. The system shows that control of mass transport at nanometric scale can be achieved by using suitable rigid solids and pH-active molecules. The design principle suggests new perspectives in the search of ionically tuned tailored materials and devices with a fine control of mass transport for new applications in fields such as drug delivery, selective removal of toxic species, sensing, or catalysis.  相似文献   

5.
Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has evolved into a powerful characterization tool for polymeric materials and is increasingly being used to elucidate composition and orientation in thin films of relevance to organic electronic devices. For accurate quantitative compositional analysis, insight into the electronic structure and the ability to assess molecular orientation, reliable reference spectra with known energy resolution and calibrated energy scale are required. We report a set of such NEXAFS spectra from 23 semiconducting polymers and some related materials that are frequently used in organic device research.  相似文献   

6.
Organogels as scaffolds for excitation energy transfer and light harvesting   总被引:1,自引:0,他引:1  
The elegance and efficiency by which Nature harvests solar energy has been a source of inspiration for chemists to mimic such process with synthetic molecular and supramolecular systems. The insights gained over the years from these studies have contributed immensely to the development of advanced materials useful for organic based electronic and photonic devices. Energy transfer, being a key process in many of these devices, has been extensively studied in recent years. A major requirement for efficient energy transfer process is the proper arrangement of donors and acceptors in a few nanometers in length scale. A practical approach to this is the controlled self-assembly and gelation of chromophore based molecular systems. The present tutorial review describes the recent developments in the design of chromophore based organogels and their use as supramolecular scaffolds for excitation energy transfer studies.  相似文献   

7.
As the dimensions of electronic devices approach those of molecules, the size, geometry, and chemical composition of the contact electrodes play increasingly dominant roles in device functions. It is shown here that single-walled carbon nanotubes (SWNT) can be used as quasi-one-dimensional (1D) electrodes to construct organic field effect transistors (FET) with molecular scale width ( approximately 2 nm) and channel length (1-3 nm). An important feature owing to the quasi-1D electrode geometry is the favorable gate electrostatics that allows for efficient switching of ultra-short organic channels. This affords room temperature conductance modulation by orders of magnitude for organic transistors that are only several molecules in length, with switching characteristics superior to similar devices with lithographically patterned metal electrodes. With nanotubes, covalent carbon-carbon bonds could be utilized to form contacts to molecular materials. The unique geometrical, physical, and chemical properties of carbon nanotube electrodes may lead to various interesting molecular devices.  相似文献   

8.
Currently, ordered mesoporous materials prepared through the self‐assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic‐based materials, for example, transition‐metal oxides, carbons, inorganic‐organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant‐based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation‐mediated direct templating (EDIT), spray‐dried techniques, and collaboration with hard‐templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic‐scale controls of mesochannels are important for innovative applications such as molecular‐scale devices and electrodes with enhanced diffusions of guest species. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 321–339; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900022  相似文献   

9.
有机光伏材料与器件研究的新进展   总被引:4,自引:0,他引:4  
封伟  王晓工 《化学通报》2003,66(5):291-300
近几年有机光伏电池应用研究发展迅猛。本文综述了有机光伏薄膜电池在材料(包括有机小分子材料与聚合物材料)、器件构造方面的最新进展,分析了有机聚合物光伏电池目前效率低的主要原因,并探讨了该领域进一步研究的方向和前景。  相似文献   

10.
The amplification of molecular motions so that they can be detected by the naked eye (107‐fold amplification from the ångström to the millimeter scale) is a challenging issue in the development of mechanical molecular devices. In this context, the perfectly ordered molecular alignment of the crystalline phase has advantages, as demonstrated by the macroscale mechanical motions of single crystals upon the photochemical transformation of molecules. In the course of our studies on thermoresponsive amphiphiles containing tetra(ethylene glycol) (TEG) moieties, we serendipitously found that thermal conformational changes of TEG units trigger a single‐crystal‐to‐single‐crystal polymorphic phase transition. The single crystal of the amphiphile undergoes bending and straightening motion during both heating and cooling processes at the phase‐transition temperatures. Thus, the thermally triggered conformational change of PEG units may have the advantage of inducing mechanical motion in bulk materials.  相似文献   

11.
An artificial molecular machine consists of molecule or substituent components jointed together in a specific way so that their mutual displacements could be initiated using appropriate outside stimuli. Such an ability of performing mechanical motions by consuming external energy has endowed these tiny machines with vast fascinating potential applications in areas such as actuators, manipulating atoms/molecules, drug delivery, molecular electronic devices, etc. To date, although vast kinds of molecular machine archetypes have been synthesized in facile ways, they are inclined to be defined as switches but not true machines in most cases because no useful work has been done during a working cycle. More efforts need to be devoted on the utilization and amplification of the nanoscale mechanical motions among synthetic molecular machines to accomplish useful tasks. Here we highlight some of the recent advances relating to molecular machines that can perform work on different length scales, ranging from microscopic levels to macroscopic ones.  相似文献   

12.
13.
An alkylated hexa-peri-hexabenzocoronene with a covalently tethered pyrene unit serves as a model to study self-assembling discotic pi-system dyads both in the bulk and at a surface. Wide-angle X-ray scattering, polarized light microscopy, and differential scanning calorimetry revealed bulk self-assembly into columnar structures. Relative to a control without a tethered pyrene, the new dyad exhibits a more ordered columnar phase at room temperature but with dramatically lowered isotropization temperature, facilitating homeotropic alignment. These two features are important for processing such materials into molecular electronic devices, e.g., photovoltaic diodes. Scanning tunneling microscopy at a solution-solid interface revealed uniform nanoscale segregation of the large from the small pi-systems, leading to a well-defined two-dimensional crystalline monolayer, the likes of which may be employed in the future to study intramolecular electron transfer processes at surfaces, on the molecular scale.  相似文献   

14.
《化学:亚洲杂志》2017,12(7):730-733
An interesting physical phenomenon, electroluminescence, that was originally observed with a hydrocarbon molecule has recently been developed into highly efficient organic light‐emitting devices. These modern devices have evolved through the development of multi‐element molecular materials for specific roles, and hydrocarbon devices have been left unexplored. In this study, we report an efficient organic light‐emitting device composed solely of hydrocarbon materials. The electroluminescence was achieved in the blue region by efficient fluorescence and charge recombination within a simple single‐layer architecture of macrocyclic aromatic hydrocarbons. This study may stimulate further studies on hydrocarbons to uncover their full potential as electronic materials.  相似文献   

15.
热电材料能够将热能与电能直接相互转化,在废热回收及绿色制冷领域中具有巨大的应用潜力。相比无机块体热电材料,柔性热电材料具有可弯折、体积小、质量轻等优点,还适用于制备可穿戴电子设备。近10年来,基于导电高分子、碳材料和无机纳米材料等的柔性复合热电材料及器件逐渐成为炙手可热的研究领域,受到了业内广泛的关注。本文综述了近年来基于不同材料体系的柔性热电材料及器件的研究进展、存在的亟待解决的问题和未来的发展方向。大量研究结果表明,材料的热电性能可以通过化学合成和分子设计战略、形貌控制及掺杂技术等进行有效的调控。研发满足实际应用需要的先进柔性热电材料仍然极具挑战性。  相似文献   

16.
Today, seeking new materials for tailor-made applications and new devices leads to explore the potential offered by various kinds of functional building blocks. Hence, it concerns not only solid-state chemists, physicists or materials engineers, but also the area of (supra)molecular chemistry, and biochemistry as well. This is especially clear in the field of hybrid multifunctional materials. Indeed, their design requires investigating new concepts derived from principles developed in these different disciplines. The aim of this critical review is to present the last achievements concerning transition metal hydroxide hybrids, their synthesis, flexibility and functional properties. They often provide nice model systems for understanding the correlation between structure and physical properties brought by the molecular moieties grafted onto the metal hydroxide basis layers. The contribution of the atomic scale modelling to the electronic structure calculations and structural optimization is also reported (216 references).  相似文献   

17.
Phosphazenes, one of the most important classes of organophosphorus compounds containing phosphorus (V) with double bonds between P and N, can be cyclic molecules or high molecular weight polymers that play an important and dominant role in advanced inorganic materials. Phosphazenes have been the subject of many studies over the past two decades as an excellent synthetic platform for the development of fluorescent materials. This study is conducted to evaluate the contribution of phosphazene chemistry to the preparation of fluorescent materials and to emphasize its importance in development of sophisticated materials. This review provides detailed information about the latest developments in the field of cyclic-, dendrimeric- and polymeric phosphazenes based fluorescent materials and their application examples of sensors (fluorescent and electrochemical) and optoelectronic devices (OLED, OFET and electrochromic devices). The future perspective of fluorescence materials based on phosphazenes is also discussed.  相似文献   

18.
Inspired by human vision, a diverse range of light-driven molecular switches and motors have been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc. The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.  相似文献   

19.
有机发光器件(OLED)在平板显示和固体照明领域有着广阔的应用前景.过去的二十多年来,OLED的效率得到了大幅提升,但是器件的稳定性仍有待提高.在OLED器件中,通常认为载流子的传输涉及分子反复的氧化还原.因此,OLED材料的电化学性质是影响器件稳定性的重要因素.本文总结了近年来有关OLED材料电化学性质的研究进展,并重点探讨了材料的电化学稳定性与器件稳定性之间的关系.总结发现:(1)单极性材料的电化学不稳定性是导致器件衰减的本质原因之一;(2)双极性材料高度的电化学稳定性有助于提高器件的稳定性,但并不一定保证器件具有高稳定性;(3)有关材料分子结构的稳定性对器件稳定性的影响以及器件的本征衰变机制还有待深入研究.相信,对OLED发光材料稳定性和器件衰变机制的深入研究将有助于提高其他有机光电材料和器件的稳定性,从而推动有机电子学和相关产业的发展.  相似文献   

20.
有机电致发光器件(OLEDs)在平板显示和固体照明领域有着广阔的应用前景,发展十分迅速,已实现了商业化.而可溶液加工的OLEDs采用喷墨打印、卷对卷印刷等低成本方式进行加工,在实现低成本、大面积显示及照明器件等方面具有巨大的应用潜力,引起了广泛关注.实现高效溶液加工型OLEDs的实用性需要在光电材料设计合成及器件制备方法上进一步深入研究.本文总结了发光材料与器件国家重点实验室可溶液加工型OLEDs材料及器件的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号