首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The properties of a dendronized linear polymer (DP) in dilute solutions depending on solvent quality and temperature are described. The polymer has a contour length of L c?=?1,060 nm. The sample of the fourth generation (PG4) was analyzed in the thermodynamically good solvents dioxane, chloroform, and methanol. The wormlike macromolecule has a persistence length l p?=?7 nm in dioxane and a cross-section radius determined by small angle X-ray scattering (SAXS) of R c (SAXS)?=?2.8 nm. The bulk density of PG4 determined by SAXS was compared with solution density. Evidence for substantial swelling of the cross-section was found. Toluene acts as a thermodynamically poor solvent (θ solvent). Above the θ temperature T θ , a strong temperature dependence of the size and the Young’s modulus E was observed. Following Odijk, E/k B T ~1 was found. Below T θ , a regime characterized by unswelling of the wormlike chains was observed. The results suggest that DPs can be described as soft colloid filaments, which are subject to commonly observed interactions in colloidal systems. A phase diagram indicates a regime below T θ in which fluctuations of osmotic pressure inside the filaments result in periodic undulation of the chains. In summary, introducing a dense dendritic shell around the backbone converts conventional polymers into molecular colloids.
Figure
?  相似文献   

2.
We demonstrate that base mismatches of caspase-3 DNA sequences can be detected by surface plasmon resonance (SPR) following signal amplification by polymerase from Thermus aquaticus (Taq). The concentration of magnesium ions and the respective dNTPs for polymerase binding to the oligonucleotides on the sensing surface were optimized. Taq polymerase binds to double-stranded DNA that is self-assembled on the gold surface of the biosensor to induce an SPR signal. Experiments are presented on the effect of Mg(II) and dNTP concentrations on the activity of the polymerase on the sensing surface. The detection limits are 50 pM, 0.1 nM, 0.7 nM, 7 nM, and 20 nM for correctly matched, single-base mismatched, two-base mismatched, three-base mismatched and four-base mismatched DNA of caspase-3, respectively. This is attributed to the optimized experimental conditions, with samples containing 2 μM of Mg(II) and 0.3 mM of dNTP.
Figure
The process of detecting mismatched caspase-3 DNA oligonucleotides with SPR biosensor  相似文献   

3.
We report on an effective route to decorate titanium nanotube arrays (TiNT) with silver nanoparticles (AgNPs). In this method, surface-adsorbed antibody molecules serve as templates to bind silver ions by electrostatic interaction. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. This route also was successfuly applied to gold nanoparticles (starting from negatively charged metallic precursor ions). Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.
Figure
An effective protein-mediated route to decorate Ag nanoparticles (AgNPs) in TiO2 nanotube arrays (TiNT) is reported. The photocatalytic activity of the TiNT under UV irradiation causes the photoreduction of AgNPs to occur, and the biological template is decomposed simultaneously. Compared to undecorated samples, the AgNPs/TiNT samples under visible light display a much higher antibacterial activity against Escherichia coli.  相似文献   

4.
The mechanism of action underlying β-secretase 1 (BACE-1) inhibition was characterized by a surface plasmon resonance (SPR) method using primary amino groups to immobilize OM99-2, a well-known highly potent peptidic BACE-1 inhibitor, on the carboxyl groups of the dextran layer of a sensor chip. The diluted BACE-1 was mixed with buffer or the test compound and the mixture was flushed through the chip. BACE-1 binding to the immobilized peptide inhibitor was quantified. This SPR method was used to identify BACE-1 inhibitor binding sites and the mechanism of action (competitive/noncompetitive) and to validate findings of fluorescence resonance energy transfer (FRET) inhibition studies. To support this, a multimethodological approach (circular dichroism and fluorescence spectroscopy) was applied in parallel to FRET inhibition studies to characterize the binding modes of peptidic and nonpeptidic BACE-1 inhibitors. Circular dichroism spectroscopy served to correlate the conformation of BACE-1 with enzymatic activity and to monitor secondary structure changes upon ligand binding. In a complementary approach, direct fluorescence spectroscopy was used to characterize different BACE-1 inhibitor binding sites. The influence of pH and inhibitors on BACE-1 secondary structure was also elucidated. This multimethodological approach was applied to identify binding modes of bis(7)-tacrine and myricetin in comparison with well-known peptidic inhibitors.
Figure
SPR competition studies for BACE-1 inhibitors  相似文献   

5.
We report on an investigation of the optical properties of gold nanoparticles assembled as thin films of different thickness. The nanoparticles were linked to the surface of a gold chip by dithiol reagents and studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. There is good correlation between the experimental findings and theoretical simulation, and the respective data reveal the presence of ordered nanostructures in the assemblies. The shift in the SPR angle is linearly dependent on the particle size and the ratio of the different particles. SPR spectroscopy also reveals important information in terms of the optical constants of such films. This shall be further applied to in-situ quality control in the fabrication of optoelectronic, solar cell and semiconductor devices.
Figure
SPR angle shifts according to the immobilization of gold nanoparticles with different size on BDMT SAM  相似文献   

6.
During their travel inside a traveling wave ion mobility cell (TW IMS), ions are susceptible to heating because of the presence of high intensity electric fields. Here, we report effective temperatures T eff,vib obtained at the injection and inside the mobility cell of a SYNAPT G2 HDMS spectrometer for different probe ions: benzylpyridinium ions and leucine enkephalin. Using standard parameter sets, we obtained a temperature of ~800 K at injection and 728?±?2 K into the IMS cell for p-methoxybenzylpyridinium. We found that T eff,vib inside the cell was dependent on the separation parameters and on the nature of the analyte. While the mean energy of the Boltzmann distributions increases with ion size, the corresponding temperature decreases because of increasing numbers of vibrational normal modes. We also investigated conformational rearrangements of 7+ ions of cytochrome c and reveal isomerization of the most compact structure, therefore highlighting the effects of weak heating on the gas-phase structure of biologically relevant ions.
Figure
?  相似文献   

7.
To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical–electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro-structured 8?×?8 aperture partition arrays with average aperture diameters of 301?±?5 μm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24?×?24 and hexagonal 24?×?27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.
Figure
Fluorescent image of a large 24?×?24 rectangular bilayer array  相似文献   

8.
In collisional activation of argentinated N-arylmethyl-pyridin-2-ylmethanimine, a neutral molecule of AgNH2 is eliminated, carrying one hydrogen from the methylene and the other one from the ortho position (relative to the ipso carbon) of the aryl ring. Taking argentinated N-benzyl-pyridin-2-ylmethanimine for example, the proposition that the AgNH2 loss results from intramolecular arylmethyl transfer combined with cyclodeamination is rationalized by deuterium labeling experiments, blocking experiments, and theoretical calculations. The structure of the final product ion from loss of AgNH2 was confirmed further by multistage mass spectrometry.
Figure
?  相似文献   

9.
A method based on reverse atom transfer radical polymerization (R-ATRP) and molecular crowding has been used for design and synthesis of monolithic molecularly imprinted polymers (MIPs) capable of recognizing ibuprofen (IBU). 4-Vinylpyridine (4-VP) was used as the functional monomer, and ethylene glycol dimethacrylate (EDMA) was the crosslinking monomer. Azobisisobutyronitrile (AIBN)–CuCl2N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) was used as the initiating system. Compared with conventional radical polymerization-based IBU-MIPs, the imprinting effects of the obtained IBU-MIPs was enhanced, suggesting the merit of combination of reverse ATRP and molecular crowding. In addition, it was found that the polymerization time of the molecularly imprinted monolithic column, the amount of template, the degree of crosslinking, and the composition of mobile phase greatly affected retention of the template and the performance of molecular recognition .
Figure
Schematic representation of molecular imprinting under molecular crowding conditions in the presence of R-ATRP  相似文献   

10.
We show that the antigen CFP-10 (found in tissue fluids of tuberculosis patients) can be used as a marker protein in a surface-plasmon resonance (SPR) based method for early and simplified diagnosis of tuberculosis. A sandwich SPR immunosensor was constructed by immobilizing the CFP-10 antibody on a self-assembled monolayer on a gold surface, this followed by blocking it with bovine serum albumin. Following exposure of the sensor surface to a sample containing CFP-10, secondary antibody immobilized on nickel oxide nanoparticles are injected which causes a large SPR signal change. The method has a dynamic range from 0.1 to around 150 ng per mL of CFP-10, and a detection limit as low as 0.1 ng per mL. This is assumed to be due to the high amplification power of the NiO nanoparticles.
Figure
Schematic diagram of sensor chip configuration (left) and SPR study based on amplification strategy with NiO nanoparticles (right).  相似文献   

11.
In the present study, the molecular chain changes and structural transitions of partially hydrolyzed poly(vinyl alcohol) (PVA) having a 12 mol% acetate unit were analyzed by moving-window two-dimensional (MW2D) correlation infrared spectroscopy combined with differential scanning calorimetry and thermogravimetric analysis. The results show the glass-transition temperature (T g ) of PVA is clearly distinguished by MW2D correlation infrared spectroscopy, and the acetate groups start to be eliminated around the melting temperature, whereas the free water molecules in PVA are eliminated above T g. The correlation movements of the O–H stretching modes, including the free hydroxyl groups and the hydrogen bonds, are clearly determined using MW2D correlation infrared spectroscopy. The spectral variations in the C=O stretching region caused by the elimination of the acetate unit from polymer chains are also discussed on the basis of the results of the MW2D correlation analysis. Such results cannot be obtained by traditional infrared spectroscopy owing to the complex overlapping peaks.
Figure
The structural variations of partially hydrolyzed poly(vinyl alcohol) studied by moving-window two-dimensional correlation infrared spectroscopy  相似文献   

12.
A surface plasmon resonance (SPR) immunoassay for on-line detection of the strobilurin fungicide pyraclostrobin in untreated fruit juices is presented. The analysis of pyraclostrobin residues is accomplished in apple, grape, and cranberry samples by monitoring the recognition events occurring separately in a two-channel home-made SPR biosensor. Covalent coupling of the analyte derivative results in a reversible method, enabling more than 80 measurements on the same sensor surface. Optimization of the immunoassay conditions provides limits of detection as low as 0.16?μg?L?1. The selectivity and reproducibility of the analysis is ensured by studying both non-specific interactions with unrelated compounds and inter-assay coefficients of variation. Excellent recovery ranging from 98 to 103?% was achieved by a simple 1:5 dilution of fruit juice with assay buffer before the analysis. The lack of previous cleaning and homogenization procedures reduces the analysis time of a single food sample to only 25?min, including the regeneration cycle.
Figure
Schematic representation of the SPR platform  相似文献   

13.
Peanut-like CaMoO4 micro/nano structures with three different sizes were harvested by a simple reverse-microemulsion method at room temperature. Employing synthesized micro/nano CaMoO4 and HCl as reaction systems, thermodynamic parameters such as standard molar enthalpy of reaction Δr H m θ , standard molar Gibbs free energy of activation Δ r G m θ , standard molar enthalpy of activation Δ r H m θ , and standard molar entropy of activation Δ r S m θ were successfully acquired for the first time by in situ microcalorimetry. Furthermore, change regularities of the thermodynamic parameters for the micro/nano reaction systems were obtained and discussed. It demonstrated that size effect has significant influence on thermodynamic parameters of micro/nano material reaction systems.  相似文献   

14.
Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18?% and 5?%, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies.
Figure
Schematic diagram of Ab-Ag interaction on MNPs confined Au surface (left) and SPR study on the immunoactivity of BSA adsorbed on MNPs (right).  相似文献   

15.
We developed a biosensor based on the surface plasmon resonance (SPR) method for the study of the binding kinetics and detection of human cellular prions (PrPC) using DNA aptamers as bioreceptors. The biosensor was formed by immobilization of various biotinylated DNA aptamers on a surface of conducting polypyrrole modified by streptavidin. We demonstrated that PrPC interaction with DNA aptamers could be followed by measuring the variation of the resonance angle. This was studied using DNA aptamers of various configurations, including conventional single-stranded aptamers that contained a rigid double-stranded supporting part and aptamer dimers containing two binding sites. The kinetic constants determined by the SPR method suggest strong interaction of PrPC with various DNA aptamers depending on their configuration. SPR aptasensors have a high selectivity to PrPC and were regenerable by a brief wash in 0.1 M NaOH. The best limit of detection (4 nM) has been achieved with this biosensor based on DNA aptamers with one binding site but containing a double-stranded supporting part.
Fig
Aptasensors for kinetic evaluation and detection of prions by SPR  相似文献   

16.
In this research, electrospray ionization mass spectrometry (ESI-MS) was used to probe the binding selectivity of a flexible cyclic polyamide (cβ) to G-quadruplexes from the long G-rich sequences in the c-myb oncogene promoter. The results show that three G-rich sequences, including d[(GGA)3GGTCAC(GGA)4], d[(GGA)4GAA(GGA)4], and d[(GGA)3GGTCAC(GGA)4GAA(GGA)4] species in the c-myb promoter can form parallel G-quadruplexes, and cβ selectively binds towards these G-quadruplexes over both several other G-quadruplexes and the duplex DNA. These properties of cβ have profound implications on future studies of the regulation of c-myb oncogene expression.
Figure
?  相似文献   

17.
A glucose biosensor has been fabricated by immobilizing glucose oxidase (GOx) on unhybridized titanium dioxide nanotube arrays using an optimized cross-linking technique. The TiO2 nanotube arrays were synthesized directly on a titanium substrate by anodic oxidation. The structure and morphology of electrode material were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the glucose biosensor were conducted by cyclic voltammetry and chronoamperometry measurements. It gives a linear response to glucose in the 0.05 to 0.65 mM concentration range, with a correlation coefficient of 0.9981, a sensitivity of 199.6 μA mM?1 cm?2, and a detection limit as low as 3.8 µM. This glucose biosensor exhibited high selectivity for glucose determination in the presence of ascorbic acid, sucrose and other common interfering substances. This glucose biosensor also performed good reproducibility and long-time storage stability. This optimized cross-linking technique could open a new avenue for other enzyme biosensors fabrication.
Figure
A schematic diagram for the fabrication of unhybridized TiO2 nanotube arrays glucose biosensor via optimized cross-linking technique.  相似文献   

18.
We have developed a heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based immunochromatographic (ICG) strip for the determination of the herbicide atrazine in water samples. The ELISA had a half-maximum inhibition concentration (IC50) of 0.12 ng mL?1 and a limit of detection (LOD, calculated as the IC15 value) of 0.01 ng mL?1. The average of recoveries for all spiked water samples was 96.5%. There was a good correlation between the data determined by this ELISA and those obtained by high performance liquid chromatography (HPLC) (r 2 ?=?0.996). The visual LOD of the ICG strip assay was 2 ng mL?1. The assay process only took 10 min, and no sample pretreatment was required. Its high specificity, sensitivity and fast detection made the strip well suited for on-site screening of atrazine in water samples. Both the ELISA and the ICG strip assay are useful for rapid analysis of a large number of water samples at low cost.
Figure
A heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based immunochromatographic (ICG) strip assay are proposed for the determination of the herbicide atrazine in water samples.  相似文献   

19.
Head-to-head-type styrene and substituted styrene dimers bearing two fluoroalkyl end-groups have been efficiently synthesized by a simple reaction of perfluoroalkyl iodide with styrene under radical conditions as a mixture of meso and racemic forms. The meso form obtained from the mixture by recrystallization gave a crystal suitable for X-ray diffraction study and the crystal structure was found to be based on π-stacking of benzene rings and aggregation of fluoroalkyl chains. Dynamic light scattering measurements showed that meso-styrene dimers bearing two fluoroalkyl end-groups can form the nanometer size-controlled self-assemblies through the intermolecular π-stacking of benzene rings and aggregation of end-capped fluoroalkyl groups in methanol.
Figure
Self-assembled meso-perfluorohexylated styrene dimer [C6F13–CH2CHPh–CHPh–CH2–C6F13] based on π-stacking of benzene rings and aggregation of fluoroalkyl chains: Fluorous domains are constructed by self-assembly of fluoroalkyl chains.  相似文献   

20.
Previous experimental and theoretical work identified that the application of a static magnetic (B) field can improve the resolution of a quadrupole mass spectrometer (QMS) and this simple method of performance enhancement offers advantages for field deployment. Presented here are further data showing the effect of the transverse magnetic field upon the QMS performance. For the first time, the asymmetry in QMS operation with B x and B y is considered and explained in terms of operation in the fourth quadrant of the stability diagram. The results may be explained by considering the additional Lorentz force (v x B) experienced by the ion trajectories in each case. Using our numerical approach, we model not only the individual ion trajectories for a transverse B field applied in x and y but also the mass spectra and the effect of the magnetic field upon the stability diagram. Our theoretical findings, confirmed by experiment, show an improvement in resolution and ion transmission by application of magnetic field for certain operating conditions.
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号