首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel agarose–nickel (Ag–Ni) expanded bed matrix was investigated with regard to suitability for practical recovery of nano-bioproducts (NBPs) such as protein nanoparticles as drug delivery carriers. The matrix was immobilized by Reactive Green 19 (RG19) dye–ligand and was subjected to biochemical evaluation through batch adsorption studies (isotherm and kinetic studies) and column chromatography of bovine serum albumin nanoparticles (BSA NPs) with average size of 85–95 nm as a model system. Based on adsorption isotherm investigations, the adsorption phenomenon appeared to follow the Langmuir isotherm model with maximum binding capacity of 24.9 mg/ml adsorbent. Subsequently adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetics equation. The results demonstrated that the adsorption process kinetics followed the pseudo-first-order kinetic model. The dynamic binding capacity (DBC) for BSA NP adsorption was calculated at various flow velocities which showed favorable column efficiency at relatively high flow rates. BSA NPs recovery was studied in the expanded bed column which resulted in 74 % recovery. The results indicated that the novel resin is a promising chromatographic medium for protein nanoparticle separation with high adsorption capacity and column efficiency at reasonably high flow rates. The generic application of such dye–ligand immobilized composite matrix for the adsorption and purification of BSA NPs as a nanoparticulate bioproduct was discussed.  相似文献   

2.
This paper summarizes the critical examination of the hydrodynamic performance of the NBG expanded bed contactor operated with streamline-DEAE adsorbent under various operating conditions for expanded bed adsorption of plasmid DNA nanoparticles from alkaline lysate. The purification process is not RNase-free. In this study, a rapid and efficient scaleable purification protocol obtaining, plasmid DNA nanoparticles (average size of 40 nm) with a high purity level for use as therapeutic agent in customized NBG expanded bed columns was developed. This technique allows efficient levels of binding to the column media and vector purification without centrifugation or filtration steps. Residence time distribution (RTD) studies were exploited to achieve the optimal condition of plasmid DNA nanoparticle (pDNA) recovery upon anion exchange adsorbent in this contactor. In addition, the purification experiments were carried out in the expanded bed columns with settle bed height of 6.0 ± 0.2 cm. NaCl gradient elution enabled the isolation of supercoiled plasmid from low-Mr RNA, cDNA and plasmid variants. Subsequently dynamic binding capacity of the adsorbent was calculated while these values decreased with increase in flow velocity. Moreover, the effect of pH upon the performance of this recovery process and the feedstock volume upon the expanded bed anion exchange purification was investigated. The results demonstrated that separation of low-Mr RNA from plasmid DNA isoforms in the range of pH between 5.5 and 7.5 is achievable in this column. The yield of recovery of pDNA in optimal condition was higher than 88.51% which was a superior result in one-pass frontal chromatography. The generic application of simple customized NBG expanded bed column and its potential for the purification and recovery of plasmid DNA as a nanoparticulate bioproduct is strongly discussed.  相似文献   

3.
The use of iron oxide/amino-functionalized silica core–shell magnetic nanoparticles for preconcentration of Pb2+ followed by its consecutive atomic absorption spectrometry determination is described. Effects of various operating variables, namely, solution pH, initial Pb2+ concentration, contact time, adsorbent dosage, sample volume, concentration and volume of desorbing solution, and co-existing ions on solid-phase extraction (SPE) of Pb2+ were studied by batch equilibrium technique. The experimental adsorption data were well fitted to the Langmuir isotherm model. The Langmuir adsorption capacity and equilibrium time were found to be 100 mg g?1 and 20 min, respectively. The adsorption data were also fitted to kinetic pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed pseudo-second-order model. Under the optimal SPE conditions, the enrichment factor, detection limit and relative standard deviation for determination of Pb2+ were found to be 211, 1 μg L?1, and 3.7 % for 50 μg L?1, respectively. The proposed method was successfully applied to the determination of lead in a real sample with satisfactory results.  相似文献   

4.
This study deals with the fabrication and characterization of a pellicular adsorbent appropriate for the expanded bed adsorption (EBA) process. The synthesized adsorbent has an yttria-stabilized zirconia nucleus coated with agarose. Morphological analysis of the coated particles was performed by light-scattering microscopy and showed an average diameter of 197.54 and 202.25 µm, for the nucleus and coated particle, respectively. A screening for the reactive dyes reactive blue 19 (RB19), reactive blue 21 (RB21) and reactive orange 107 (RO107) was performed after immobilization onto the pellicular adsorbent by changing the pH, aiming at finding the binding capacity of these to adsorb bovine serum albumin (BSA). The reactive orange 107 was selected and it was more stable at pH 4.5. Study of the kinetics between BSA and the dye-immobilized particle showed that equilibrium is reached before 1 h. The adsorption isotherm of BSA onto RO107-immobilized adsorbent fitted the Langmuir model showing a qm = 102.328 mg BSA/mL of adsorbent. The pellicular adsorbent also showed good expansion even at a high operating flow rate. Therefore, at a linear velocity as high as 2725 cm/h, a dynamic capacity of 15.7 mg of BSA/mL of adsorbent was obtained.  相似文献   

5.
Magnetic nanoparticles with monodisperse shape and size were prepared by a simple method and covered by silica. The prepared core-shell Fe3O4@silica nanoparticles were functionalized by amino groups and characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. The synthesized nanoparticles were employed as an adsorbent for removal of Hg2+ from aqueous solutions, and the adsorption phenomena were studied from both equilibrium and kinetic point of views. The adsorption equilibriums were analyzed using different isotherm models and correlation coefficients were determined for each isotherm. The experimental data were fitted to the Langmuir–Freundlich isotherm better than other isotherms. The adsorption kinetics was tested for the pseudo-first-order, pseudo-second-order and Elovich kinetic models at different initial concentrations of the adsorbate. The pseudo-second-order kinetic model describes the kinetics of the adsorption process for amino functionalized adsorbents. The maximum adsorption occurred at pH 5.7 and the adsorption capacity for Fe3O4@silica-NH2 toward Hg2+ was as high as 126.7 mg/g which was near four times more than unmodified silica adsorbent.  相似文献   

6.
Over 30 million tons of excess sludge is discharged from rural municipal sewage plants annually in China and it is predicted that this figure will keep increasing. However, most of the excess sludge is dumped in landfills except for minor applications. In this study, based on low-cost and recycling waste, the excess sludge was used to adsorb organic dyes from aqueous solution after being directly dewatered. The powdered excess sludge (PES) presents selective adsorption property to cationic dyes. Statics batch adsorption experiments of malachite green (MG) on PES were performed to evaluate the effects of pH, adsorbent dosage, and initial MG concentration. Results revealed that the bio-adsorption equilibrium of MG on the PES can be quickly achieved at 30 min with maximum percentage adsorption of 84% at pH 7, initial dye concentration of 20 mg L?1, and adsorbent dosage of 1.5 g L?1. Moreover, the adsorption kinetics follows a pseudo-second-order pathway, and the equilibrium adsorption data could be described well by the Langmuir isotherm equation. Intra-particle diffusion is not the only rate-controlling step in the entire adsorption process. The adsorption process is endothermic, spontaneous, and random. PES can be used as a low-cost adsorbent for refractory cationic organic dye in effluent.  相似文献   

7.
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by a low cost in a routine protocol. Subsequently, this novel material characterization and identification are followed by different techniques such as th eBruner–Emmet–Teller (BET) theory, scanning electron microcopy, and transmission electron microscopy analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.798 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of sunset yellow (SY) and methyl orange (MO). Generally, the influence of variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order and intra-particle diffusion approach. The equilibrium data of the removal strongly follow the Langmuir monolayer adsorption with high adsorption capacity in a short amount of time. This novel adsorbent by small amount (0.01 g) really is applicable for removal of high amount of both dyes (MO and SY) in short time (<18 minutes). Equilibrium data fitted well with the Langmuir model at all amount of adsorbent, while maximum adsorption capacity for MO 161.29 mg g?1 and for SY 227.27 for 0.005 g of Au-NP-AC.  相似文献   

8.
An efficient adsorbent (L-Glu/GO) was successfully synthesized by the reaction between L-glutamic acid (L-Glu) and graphene oxide (GO). The structure and morphology of this adsorbent were characterized by FTIR, SEM, XRD, and TGA. The SEM result indicated that the adsorbent was a nanomaterial with a size of about 50–400 nm. The adsorption experiments of various heavy ions on L-Glu/GO demonstrated that the adsorption performance of Pb(II) was better than others. Various variables affecting the adsorption of L-Glu/GO for Pb(II) were systematically explored. The experimental results indicated that the maximum adsorption capacity and equilibrium time of Pb(II) on L-Glu/GO were 513.4 mg g?1 and 40 minute, respectively. The sorption kinetics and isotherm fitted well with the pseudo-second-order model and Langmuir model, respectively. The sorption mainly was a chemical process. Thermodynamic studies revealed that the adsorption was a spontaneous and exothermic process. The adsorbent could be regenerated with HCl solution. Hence, it was suggested that the L-Glu/GO could be applied in the removal of Pb(II) from wastewaters.  相似文献   

9.
We have prepared and characterized Fe3O4 nanoparticles and their binary mixtures (IL-Fe3O4) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05–2.0 mg?mL?1) were 4.0 mg?mL?1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L?mg?1, in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled.
Figure
Nanoparticles of Fe3O4 as well as its binary mixtures with ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme, bovine serum albumin and myoglobin. The mean size and the surface morphology of both nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients  相似文献   

10.
Kinetics of bovine serum albumin and ovalbumin adsorption by nanoporous carbons with different main pore sizes (1.6, 5, 7.8 and 28 nm) was studied. Experimental kinetics curves were well described by multi-exponential equation with different number of exponents (from 1 to 4). Protein adsorption kinetics showed significant dependence on pore size of carbonaceous adsorbent. Correlation between pore size distribution and amount of protein adsorbed revealed threshold pore size 7.3 nm for BSA and 6.8 nm for OVA, which are close to hydrodynamic diameter of protein molecules. The fastest and the highest adsorption of proteins were observed in carbons having developed porosity with pore sizes larger than 15 nm.  相似文献   

11.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

12.
In this paper, the NiS nanoparticles are prepared and characterized by x-ray powder diffraction and scanning electron microscopy. The NiS nanoparticles showed the excellent adsorption properties toward sunset yellow (UA) dye. The effect of solution pH, adsorbent dosage (0.005–0.020 g), contact time (0.5–30 minutes), and initial UA concentration (5–40 mg L?1) on the extent of adsorption was investigated and modeled by artificial neural network. The experimental equilibrium data was analyzed by Langmuir, Freundlich, Tempkin, and D–R isothermal models. It was seen that the data was well presented by Langmuir model with a maximum adsorption capacity of 333.3 mg g?1 at 26°C. Kinetic studies at various adsorbent dosages and initial UA concentrations show that high removal percentage (>90%) was achieved within 15 minutes. The adsorption of UA follows the pseudo-second-order rate model. The experimental data were applied to train the multilayer feed-forward neural network with three inputs and one output with Levenberg–Marquart algorithm and different numbers of neurons in the hidden layer. The minimum mean square error of 0.0003 and determination coefficient of (R2) 0.99 were found.  相似文献   

13.
The removal of Cr(VI) ions from aqueous solution by human hair waste is investigated by using UV–Vis spectrophotometer technique. The morphological analysis of the human hair was also investigated by the scanning electron microscopy, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy. The influence of various physicochemical effective parameters such as pH, ionic strength, adsorbent amount, contact time, initial concentration of metal ion on removal of Cr(VI) ions by human hair process was also studied. The optimum conditions for this adsorption process were obtained at pH = 2 and contact time of 150 min while the highest Cr(VI) uptake is recorded for 0.5 g of the adsorbent per 100 ml of solution. Three isotherms models including Langmuir, Freundlich and Temkin were applied to describe the equilibrium data. It was found that the experimental data were well described by Freundlich isothermal model. The maximum adsorption capacity was found to be 11.64 mg g?1.The thermodynamic study data showed that the adsorption process of Cr(VI) on human hair is an endothermic, spontaneous and physisorption reaction. The kinetics of the adsorption process was studied using three kinetics models including Lagergren-first-order, pseudo-second-order and Elovich model. The obtained data are indicated that the adsorption processes of Cr(VI) over human hair could be described by the pseudo-second-order kinetic model.  相似文献   

14.
A nanoporous carbon (CMK-3) was synthesized and used to adsorb 2-phenylethanol (PEA) from aqueous solutions. The characterization of CMK-3 by N2 adsorption isotherm revealed the formation of a nanoporous carbon with average pore diameter and surface area of 3.34 nm and 1268 m2 g?1, respectively. Column-like particle morphology of CMK-3 was observed from scanning electron microscope images. To evaluate the feasibility of CMK-3 as a potential PEA adsorbent, batch adsorption experiments were conducted for aqueous PEA solutions. The results showed that CMK-3 is an efficient sorbent for the separation of PEA from water. The optimized adsorbent doses were found to be 0.3 and 2.2 g L?1 for 30 and 300 mg L?1 PEA, respectively. Our studies about the effect of pH on CMK-3 adsorption capacity revealed that the adsorption capacity increased at lower pH due to the protonation of PEA. Three adsorption models, Langmuir, Freundlich and Temkin were used to describe the adsorption isotherms. Thermodynamic parameters such as ΔG 0, ΔH 0, and ΔS were also evaluated, and it was found that the sorption process was spontaneous, endothermic, and physical in nature. The adsorption kinetics was investigated in detail and the pseudo-second-order kinetic equation fitted the experimental data very well. The mechanistic study by Weber-Morris model revealed that the overall adsorption process was simultaneously governed by external mass transfer and intraparticle diffusion. Almost all (97 %) adsorbed PEA was successfully recovered into ethanol which is a common solvent in fragrance industry. CMK-3 was proved to be a promising adsorbent for the adsorption-recovery of PEA from aqueous solution.  相似文献   

15.
16.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

17.
The utilization of diatomite as potential adsorbent to remove malachite green (MG) from aqueous solution was developed. The characterization of the diatomite was evaluated by scanning electron microscope (SEM) and Brurauer Emmerr Teller (BET). The operating variables of pH, diatomite mass, initial MG concentration, and adsorption reaction time were studied. The equilibrium, kinetics, and thermodynamic parameters were investigated as well. It was found that the diatomite was composed of integral and almost circle sieve tray with lots of small pores on it, which afforded the diatomite high specific surface area of 46.09 m2 g?1. The optimum pH and reaction time were 7 and 90 minutes, respectively. The MG removal increased accordingly as the diatomite mass increased. The isotherm results showed that the equilibrium data were fitted to Langmuir model better, indicating the MG adsorption was better characterized by mono-layer. The maximum mono-layer capacity obtained from Langmuir was 23.64 mg g?1 at 25°C. The kinetic studies indicated that experiment data followed pseudo-second-order model better. It also revealed that intraparticle diffusion was not the only rate-controlling step. The thermodynamic results concluded that the adsorption process was endothermic and more favorable at high temperature. Researches confirmed the applicability of diatomite as an efficient adsorbent and low-cost process to remove hazardous materials.  相似文献   

18.
Magnetic nanoparticles (MNPs) coated with silica gel were prepared, then functionalized with a tridentate ligand via a silane coupling agent (3-chloropropyl)triethoxysilane, and finally loaded with Cu(II) ions. The resulting materials were characterized by TEM, SEM, XRD, FTIR and TGA techniques. They display strong affinity for BSA with an adsorption capacity as high as 235 mg g?1 and with a fast (30 min) establishment of adsorption equilibrium. Repetitive adsorptions (6 times) hardly affect the adsorption capability. The kinetics and isotherm of the adsorption of BSA were also investigated.
Fig
Core-Shell magnetic nanoparticles functionalised with tridentate ligand BPA which binds Cu(II) were prepared. The materials adsorb BSA with high adsorption capacity (235 mg g?1) and fast establishment of adsorption equilibrium (30 min). Repetitive adsorption-desorption (6 times) did not affect significantly the adsorption capacity.  相似文献   

19.
Uranium (VI)-containing water has been recognized as a potential longer-term radiological health hazard. In this work, the sorptive potential of sunflower straw for U (VI) from aqueous solution was investigated in detail, including the effect of initial solution pH, adsorbent dosage, temperature, contact time and initial U (VI) concentration. A dose of 2.0 g L?1 of sunflower straw in an initial U (VI) concentration of 20 mg L?1 with an initial pH of 5.0 and a contact time of 10 h resulted in the maximum U (VI) uptake (about 6.96 mg g?1) at 298 K. The isotherm adsorption data was modeled best by the nonlinear Langmuir–Freundlich equation. The equilibrium sorption capacity of sunflower straw was observed to be approximately seven times higher than that of coconut-shell activated carbon as 251.52 and 32.37 mg g?1 under optimal conditions, respectively. The positive enthalpy and negative free energy suggested the endothermic and spontaneous nature of sorption, respectively. The kinetic data conformed successfully to the pseudo-second-order equation. Furthermore, energy dispersive X-ray, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that U (VI) adsorption onto sunflower straw was predominantly controlled by ion exchange as well as complexation mechanism. The study revealed that sunflower straw could be exploited for uranium remediation of aqueous streams as a promising adsorbent.  相似文献   

20.
Adsorption of Cu(II) from aqueous solution on a novel adsorbent, silicon carbide ash (SiC ash), was studied using batch technique. The adsorbent was prepared by pyrolysis of Egyptian rice waste (rice straw and rice husk) and was characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and surface area analysis by Brunauer-Emmett-Teller (BET) Theory. The influence of pH, contact time, initial Cu(II) concentration, adsorbent dose, agitation speed, and temperature was investigated. Adsorption kinetics was analyzed using the pseudo-first-order, the pseudo-second-order, and intraparticular diffusion model. The adsorption process was found to follow a pseudo-second-order rate mechanism. The adsorption isotherm data could be well described by the Langmuir and Freundlich than the Dubinin–Radushkevich adsorption model. The adsorption capacity of 22.06 mg g?1for SiC ash was obtained at pH = 5 and temperature of 298 K. Thermodynamic parameters, change in the free energy (ΔG°), the enthalpy (ΔH°), and the entropy (ΔS°), were also calculated. The overall adsorption process was exothermic, spontaneous in nature, and proceeds with decreased randomness as the entropy is negative value. Adsorption process was successfully applied to remove Cu(II) from an industrial wastewater sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号