首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and characterization of polymer/Laponite nanocomposite latex particles through emulsion polymerization using organically modified Laponite clay platelets as seeds. Two approaches were adopted for the organic modification of Laponite. The first one is based on the grafting of either γ-methacryloyloxy propyl dimethyl-methoxysilane (γ-MPDES) or γ-methacryloyloxy propyl triethoxysilane (γ-MPTES) on the clay edges. The other strategy consists in exchanging the clay interlayer sodium ions by either a free radical initiator, 2,2-azobis(2-methyl propionamidine)hydrochloride (AIBA) or a cationic vinyl monomer, 2-(methacryloyloxy)ethyl trimethyl ammonium chloride (MADQUAT). The grafting was characterized both qualitatively using FTIR and quantitatively using elemental analysis or UV analysis. The results show that the degree of functionalization depends on the nature of the organic modifier. Before performing the emulsion polymerization reaction, the functionalized clay platelets were successfully dispersed in water. Nanocomposite latexes were then synthesized using a mixture of styrene (Styr) and butyl acrylate (BA) and sodium dodecyl sulphate (SDS) as anionic surfactant. An important result of the present work is that clay redispersion in water is a key step of the overall process. The larger the size of the clay aggregates, the poorer the stability of the resulting latex suspension. The morphology and mechanism of formation of the nanocomposite particles are discussed.  相似文献   

2.
Chlorinated polyethylene (CPE) nanocomposites were synthesized by melt blending clay-rich/poly(epsilon-caprolactone) (PCL) masterbatches to CPE matrices. The masterbatches were prepared following two synthetic routes: either PCL is melt-blended to the clay or it is grafted to the clay platelets by in situ polymerization. The microscopic morphology of the nanocomposites was characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and modulated temperature differential scanning calorimetry. When using free PCL, intercalated composites are formed, with clay aggregates that can have micrometric dimensions and a morphology similar to that of the talc particles used as fillers in commercial CPE. PCL crystallizes as long lamellae dispersed in the polymer matrix. When using grafted PCL, the nanocomposite is intercalated/exfoliated, and the clay stacks are small and homogeneously dispersed. PCL crystallizes as lamellae and smaller crystals, which are localized along the clay layers. Thanks to the grafting of PCL to the clay platelets, these crystalline domains are thought to form a network with the clay sheets, which is responsible for the large improvement of the mechanical properties of these materials.  相似文献   

3.
Polystyrene/montmorillonite (PSt/MMT) nanocomposite latexes have been synthesized by soap-free emulsion polymerization using MMT clay platelets as stabilizer. Small amounts of methacrylic acid were used as auxiliary monomer to promote clay adhesion to the surface of the particles. Overall solids content of the composite latexes in complete absence of coagulation of up to 30.7?wt% are reported under batch conditions. The 3?wt% MMT clay platelets were sufficient to maintain the colloidal stability and increasing MMT clay content resulted in the increase of particle diameter due to the improved viscosity of reaction medium. Transmission electron microscopy results demonstrate the existence of MMT platelets on the particle surface. X-ray diffraction spectroscopy (XRD) results show that an exfoliated structure of PSt/MMT nanocomposites was obtained in this study with the absence of d001 diffraction peak of MMT in the XRD region.  相似文献   

4.
Functionalization of montmorillonite clay has been done using 3-aminopropyltriethoxysilane in the presence of various solvent media. Qualitative evidence of the presence of aminosilane attached to the clay platelets have been identified using Fourier transform infrared spectroscopy (FTIR) and 29Si and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Grafting yield has been calculated using thermogravimetric analysis and total grafting yield increases with the solvent surface energy. X-ray diffraction studies of the silane functionalized montmorillonite clay exhibits two peaks, which may be attributed to intercalation and surface interaction with the broken edge platelets. Functionalized clay has been characterized by surface area measurements to understand the influence of solvents on the surface area of the functionalized clay.  相似文献   

5.
Hybrid nanoarchitecture of tailor‐made Poly(ethyl acrylate)/clay was prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, Wide‐angle X‐ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008  相似文献   

6.
This paper is an account of the experiments on grafting polyacrylamide onto organophilic montmorillonite. Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety. Since the reaction liberates HCl, it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkyl ammonium cations with H+ ions. Only the silanol groups on the edge of the clay react with vinyltrichlorosilane. The product maintained the same basal spacing as the precursor. The radical polymerization of the product with acrylamide as a vinyl monomer leads to chemical grafting of polyacrylamide onto montmorillonite surface. The homopolymer formed during polymerization was Soxhelt extracted from the grafted organoclay. Chemical grafting of the polymer onto Cloisite 20A was confirmed by IR spectroscopy. The interlayer and surface changes of the clay in the prepared nanocomposite materials and the grafted nano-particles were studied by XRD and SEM. Intercalated nanocomposites were obtained for clay contents of 3-7% and agglomeration occurred at higher clay loadings. The nanocomposites were studied by thermogravimertic analysis (TGA) and dynamic mechanical analysis (DMTA).  相似文献   

7.
Poly(isobutylene-co-isoprene) (IIR)/graphene and cloisite10A nanocomposites were prepared successfully and the resulting mechanical, rheological and barrier properties were carefully evaluated and compared. Chemical treatments like maleic anhydride grafting were used to improve the dispersion of the clay in the IIR matrix. Blends with different loading (20, 40, 60, and 80 %) of maleic anhydride grafted poly(isobutylene-co-isoprene) (MA-g-IIR) and IIR were made to maintain a balance between the beneficial polarity induced by MA grafting and the inevitable decrease in molecular weight (due to chain scission) induced by the free radical grafting process. The highest moduli, tensile strength and elongation at break were achieved in the case of a 60:40 ratio of MA-g-IIR (grafting degree 0.75)/IIR mixture with 5 phr of cloisite 10A. IIR/graphene nanocomposites exhibited higher reinforcement (Young’s moduli) and lower gas permeability compared to the optimized clay nanocomposites with same weight percentage. The filler–elastomer and filler–filler interactions deduced from rheology, stress relaxation and Payne effect experiments emphasize the reinforcing ability in IIR/graphene and MA-g-IIR/clay. XRD, SEM and TEM results further substantiated the results from the obtained micro structure of the nanocomposites. The improved performances of IIR/MA-g-IIR/clay and IIR/graphene were successfully correlated with interactions between the filler platelets and elastomer chains occurring in the nanocomposites.  相似文献   

8.
We report on the controlled chemical grafting of well-defined polymer chains onto individual montmorillonite-type clay nanoplatelets and the direct visualization of the formed hybrid material at the nanoscale level. Our approach is based on the use of a surfactant mixture that contains varying proportions of hydroxyl-substituted alkylammonium and unsubstituted alkylammonium cations to exchange the initial Na(+) counterions of the natural montmorillonite. This allows for the exchange of Na(+) by a tunable amount of hydroxyl functions at the surface of the clays. Those functions are then derivatized into aluminum alkoxides in order to initiate the ring-opening polymerization of epsilon-caprolactone directly from the clay surface that was swollen in an organic solvent. Atomic force microscopy measurements on the resulting polymer-grafted nanoplatelets demonstrate the strong dependence of the coating of the individual clay particles with the composition of the surfactant mixture used for the cationic exchange. This allows for the generation of a range of morphologies varying from polymer islands distributed over the clay surface to homogeneous polymer layers thoroughly coating the platelets. Finally, the control that is achievable over the synthesis of this new family of organic-inorganic nanohybrid materials has been extended to the surface grafting of semicrystalline poly(epsilon-caprolactone)-poly(lactic acid) diblock copolymers with defined compositions.  相似文献   

9.
Trifunctional organosilane‐modified clay was synthesized and used to prepare waterborne trifunctionalsilane‐terminated polyurethane (WSPU)/clay nanocomposite dispersions in this study. Qualitative evidence of the presence of chemically attached silane molecules on clay were confirmed by Fourier transform infrared spectroscopy. The grafted amount and the grafting yield were determined by thermogravimetric analysis and the obtained results were in good agreement with the cation exchange capacity of pristine clay. X‐ray diffraction and transmission electron microscopy examinations indicated that the clay platelets are mostly intercalated or partially exfoliated in the SPU matrix with a d‐spacing of ~2.50 nm. Clay does not influence the location and peak broadness of the glass transition temperature of soft segment as well as hard segment domains in the WSPU/clay films. WSPU/clay dispersion with higher clay content exhibits a marginal increase in the average particle size, but silane modified clay has a pronounced effect compared with Cloisite 20A‐based nanocomposites. In addition, the incorporation of organophilic clay can also enhance the thermal resistance and tensile properties of WSPUs dramatically through the reinforcing effect. The improvement in water and xylene resistance of the silane modified clay nanocomposites proved that trifunctional organosilane can be used as effective modifiers for clays. Storage stability results confirmed that the prepared nanocomposite dispersions were stable. This method provides an efficient way to incorporate silane modified clay in SPU matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2747–2761, 2007  相似文献   

10.
Nanohybrids of silver nanoparticles (AgNPs) supported on mica clay were synthesized by in situ reduction of silver nitrate in an aqueous solution. The required mica platelets of high aspect ratio were previously prepared by the exfoliation of mica clay stacks in a multilayered structure through an ionic exchange reaction with poly(oxypropylene)-amine-salt. The exfoliated nanoscale mica platelets (Mica) are polydispersed such that each platelet is 300-1000 nm in width and 1 nm in thickness. These platelets possess ionic charges in the form of ≡SiO(-)Na(+) at 120 mequiv/100 g and are suitable for supporting AgNPs in the process of in situ reduction of silver nitrate. Transmission electronic microscopy revealed the formation of AgNPs with a narrow size distribution of ca. 8 nm in diameter on the rim of individual Mica platelets. However, the pristine layered Mica structure without exfoliation failed to produce a fine AgNP distribution but instead generated particles larger than 30 nm and some precipitates. Characterization by differential scanning calorimetry and field emission scanning electron microscopy revealed that the fine AgNPs on Mica platelets exhibited a low melting temperature of 110 °C. The AgNP/Mica nanohybrid not containing an organic dispersant is considered to be a "naked" silver particle.  相似文献   

11.
It is shown that the noncatalyzed chemical grafting of an epoxy oligomer onto the surface of montmorillonite platelets may proceed via the reaction between the epoxy groups and the hydroxyl groups of the organic modifying agent of the layered aluminosilicate. The effect of grafting on the structure and heat resistance of the cured epoxy nanocomposite is studied. Complete exfoliation of montmorillonite particles into individual platelets is shown to be a necessary but insufficient condition for increasing the glass-transition temperature of the nanocomposite relative to that of the initial matrix. A much higher contribution to the increase in the glass-transition temperature is ensured by grafting of epoxy molecular chains onto the surface of aluminosilicate platelets; i.e., strong covalent matrix-aluminosilicate bonds form in addition to physical bonds, a process that entails development of a thicker three-dimensional network.  相似文献   

12.
The gelation process of poly-(N-isopropylacrylamide)-clay nanocomposite hydrogels (PNIPAAm-clay NC gels) was investigated by dynamic and static light scattering (DLS and SLS), as well as by fluorescence correlation spectroscopy (FCS). The photopolymerization method chosen for the radical polymerizing system ensured that, when the irradiation is removed, the reaction stopped immediately. Experiments showed that shortly before the gelation threshold is reached, no changes in the DLS autocorrelation functions appear, while the monomer conversion can be observed by 1H NMR spectroscopy. These results correspond to the formation of microparticles, in which the PNIPAAm chains are closely attached to the clay platelets. During the further polymerization process, clay clusters are developed before the sol-gel threshold is reached. FCS measurements were performed to obtain information on the motion of the clay platelets inside the NC gel. The DLS method gives only an average of the motions in the gel. In a time window between 10 micros and 1 s, the clay sheets labeled with Rhodamine B show no characteristic motions.  相似文献   

13.
An account of the experiments on preparing polystyrene(PS) nanocomposites through grafting the polymer onto organophilic montmorillonite is reported.Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety.Because the reaction may liberate HC1,it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkylammonium cations with H~+ ions.Only the silanol groups on the edge of the clay react with vinyltrichlorosilane.The radical polymerization of the product with styrene as a vinyl monomer leads to chemical grafting of PS onto the montmorillonite surface.The homopolymer formed during polymerization was separated from the grafted organoclay by Soxhlet extraction.Chemical grafting of the polymer onto Cloisite 20A was confirmed by infrared spectroscopy.The prepared nanocomposite materials and the grafted nano-particles were studied by XRD.Exfoliated nanocomposites may be obtained for 0.5 wt%-l wt%clay content.The nanocomposites were studied by thermogravimertic analysis(TGA) dynamic thermal analysis(DTA) and dynamic mechanical analysis (DMTA).  相似文献   

14.
Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.  相似文献   

15.
Physical adsorption of various adsorbents on the surface of premodified montmorillonite platelets was performed to fully organophilize the inorganic platelets for the purpose of their easy nanoscale dispersion in the polymer matrices during compounding. Different extents of adsorption could be achieved owing to the nature and the functionality of the adsorbents. High molecular weight adsorbents not only enhanced the organic coverage of the platelets but also were observed to contribute toward the thermal stability improvement of the organic modification, thus further fitting the use of such clays for high temperature compounding. The amount of adsorption could also be quantified with respect to the initial amount of adsorbent used in the process. The importance of a clean surface free from any excess surface modification or adsorbent molecules was emphasized. The adsorption process is an effective means to generate such high potential montmorillonites and is much simpler in technique than the common methods of grafting of polymer chains from the clay surface.  相似文献   

16.
Exfoliated polyamide‐6 (PA6)/organoclay nanocomposite films with planar‐oriented clay platelets were prepared by the simple hot pressing of melt‐extruded nanocomposite pellets. The average distance between the neighboring clay platelets was controlled by changes in the clay loading content in the nanocomposites. The effects of the clay platelet spacing on the crystallization behavior of PA6 were investigated with transmission electron microscopy and wide‐angle X‐ray diffraction. The crystal lamellae were found to be mainly perpendicular to the clay surface for the nanocomposites with large spacing between the clay sheets at low clay loading contents. This perpendicular orientation morphology was attributed to the strong interactions between the PA6 molecular chain and the clay surface. In contrast, the crystal lamellae were found to be parallel to the clay surface when the spacing between the neighboring clay platelets was less than 30 nm. It was concluded that the confinement crystallization of PA6 within the nanoscale channels formed by clay sheets resulted in this parallel orientation texture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 284–290, 2006  相似文献   

17.
Polymer—clay nanocomposites were synthesized from aromatic polyamide and organoclay using the solution intercalation technique. Polyamide chains were produced through the reaction of 4,4′‐oxydianiline (ODA) and isophthaloyl chloride (IPC) in N, N′‐dimethyl acetamide, using stoichiometry yielding chains with carbonyl chloride end groups. The intercalation of sodium montmorillonite (Na‐MMT) was carried out using p‐phenylene diamine as a swelling agent through an ion exchange reaction. Different concentrations of organoclay were blended with the polyamide solution for complete dispersion of clay throughout the matrix. The resulting composite films were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), mechanical testing, thermogravimetry (TGA), differential scanning calorimetry (DSC) and water absorption measurements. The XRD pattern and morphology of the nanocomposites revealed the formation of exfoliated and intercalated clay platelets in the matrix. The film containing a small amount of clay was semitransparent and had a tensile strength of the order of 70 MPa (relative to the 52 MPa of the pure aramid). Thermal decomposition temperatures were in the range of 300–450°C and the weight of the samples remaining after heating to 900°C was found to be roughly proportional to the clay loading. DSC showed a systematic increase in the glass transition temperature with increase in clay content. Water absorption of the pristine aramid film was rather high (5.7%), which reduced upon loading of organoclay. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of replacing the native Na(+) counter ions associated with the clay platelets by various other cations on the swelling behavior of nanocomposite (NC) gels consisting of an organic (polymer)/inorganic (clay) network were investigated. The negative surface charge of the clay platelet conferred an ionic nature on the NC gels making them a type of polyelectrolyte gel; consequently, the swelling behavior of the NC gels was strongly influenced by the valence of the co-existing counter ions. NC gels containing monovalent cations such as Na(+), K(+) and Li(+) exhibited large swellings and subsequent deswelling in water after attaining maximum degrees of swelling. In contrast, introduction of multivalent cations such as Ca(2+), Mg(2+), and Al(3+) into NC gels depressed markedly both the swelling and subsequent deswelling. The decreased swelling and suppressed deswelling with multivalent ions were strongly influenced by the initial gel state and result from the formation of additional cross-links through ionic interactions between the clay platelets and the multivalent cations. Also, the similar swelling behaviors were observed for all NC gels with different clay concentration. Further, reversible absorption/desorption and selective absorption of multivalent cations were observed for the NC gels examined.  相似文献   

19.
Smectites or swelling clay minerals are naturally occurring nanomaterials that can be fully delaminated to elementary clay mineral platelets in dilute aqueous dispersion. This review article gives an overview of the recent progress on how the elementary clay mineral platelets can be reorganized in monolayered or multilayered hybrid nanofilms by layer-by-layer assembly or the Langmuir-Blodgett technique. In the latter case one hybrid layer consists of one layer of elementary clay mineral platelets with a theoretical thickness of 0.96 nm, covered on one side by amphiphilic cations. The organization of the elementary clay mineral platelets and that of the adsorbed amphiphilic cations in the nanofilms has been studied in great detail by ATR-FTIR, UV-Vis and fluorescence spectroscopy, XRD and AFM. The nanofilms carry functional properties, such as chirality, optical nonlinearity and magnetism, which are due to the nature of the amphiphilic cations and to the organization of both the amphiphilic molecules and the elementary clay mineral platelets.  相似文献   

20.
Grafting of swelling clay materials with 3-aminopropyltriethoxysilane   总被引:5,自引:0,他引:5  
The grafting reaction between a trifunctional silylating agent and two kinds of 2:1 type layered silicates was studied using FTIR, XRD, TGA, and 29Si CP/MAS NMR. XRD patterns clearly indicate the introduction of 3-aminopropyltriethoxysilane (gamma-APS) into the clay interlayer. In the natural montmorillonite, gamma-APS adopts a parallel-bilayer arrangement, while it adopts a parallel-monolayer arrangement in the synthetic fluorohectorite. These different silane arrangements have a prominent effect on the mechanism of the condensation reaction within the clay gallery. In natural montmorillonite, the parallel-bilayer arrangement of gamma-APS results in bidentate (T2) and tridendate (T3) molecular environments, while the parallel-monolayer arrangement leads to monodentate (T1), as indicated by 29Si CP/MAS NMR spectra. This study demonstrates that the silylation reaction and the interlayer microstructure of the grafting products strongly depend on the original clay materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号