首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we have experimentally studied the structure and electrochemical properties of nanocrystalline TiFe- and LaNi5-type alloys. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo, Zr improved not only the discharge capacity but also the cycle life of these electrodes. In the nanocrystalline TiFe0.25Ni0.75, powder discharge capacity up to 155 mA h g−1 was measured (at 40 mA g−1 discharge current). On the other hand, a partial substitution of Ni by Al or Mn in LaNi5−xMx alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacity up to 258 mA h g−1 was measured (at 40 mA g−1 discharge current). The studies show, that electrochemical properties of Ni–MH batteries are the function of the microstructure and the chemical composition of used electrode materials.  相似文献   

2.
We report device linearity improvement and current enhancement in both a heterostructure FET (HFET) and a camel-gate FET (CAMFET) using InGaAs/GaAs high-low and GaAs high-medium-low doped channels, respectively. In an HFET, a low doped GaAs layer was employed to build an excellent Schottky contact. In a GaAs CAMFET, a low doped layer together withn+andp+layers formed a high-performance majority camel-diode gate. Both exhibit high effective potential barriers of >1.0 V and gate-to-drain breakdown voltages of >20.0 V (atIg=1.0 mA mm−1). A thin, high doped channel was used to enhance current drivability and to improve the transconductance linearity. A 2×100 μm2HFET had a peak transconductance of 230 mS mm−1and a current density greater than 800 mA mm−1. The device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 200 to 800 mA mm−1. A 1.5×100 μm2CAMFET had a peak transconductance of 220 mS mm−1and a current density greater than 800 mA mm−1. Similarly, the device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 160 to 800 mA mm−1. The improvement of device linearity and the enhancement of current density suggest that high-to-low doped-channel devices for both an HFET and a CAMFET are suitable for high-power large signal circuit applications.  相似文献   

3.
The process of synthesis of carbon fiber from hydrocarbon vapours in low-current electrical-discharge plasma was investigated in the paper. The carbon fibers were effectively synthesised in discharge of positive polarity generated between a stainless steel needle and a plate made of nickel alloy, for the discharge current ranged from 1 mA up to 3 mA. The experiments were carried out at normal pressure in cyclohexane vapours with argon as carrier gas. The diameter of produced fibers varied from about 20 to 70 μm. The growth rate of the fiber was about 0.25 mm/s.  相似文献   

4.
《Solid State Ionics》2006,177(13-14):1173-1177
The layered LiNiO2 cathode material for lithium ion battery was synthesized by ion-exchange reaction at low temperature in air atmosphere. The influence of synthesis conditions on the electrochemical performance of the resulting LiNiO2 was investigated. The LiNiO2 samples were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and infrared (IR) analysis. The results indicate that low temperature fabricated LiNiO2 powders keep a single layered hexagonal structure and homogenous spheric shape like the raw material NiOOH. Charge and discharge tests show that the resultant LiNiO2 exhibits good electrochemical properties. The first charge and discharge capacities of the sample are 183.4 mA h g 1 and 169.5 mA h g 1 at 0.5 mA cm 2, respectively. Galvanic charge/discharge and cyclic voltammetry tests reflect that LiNiO2 electrode exhibits good cycle reversibility.  相似文献   

5.
Thin-film transistor based on controllable electrostatic self-assembled monolayer single-wall carbon nanotubes (SWNTs) network has been fabricated by varying the density of nanotubes on the silicon substrate. The densities of SWNTs network have been investigated as a function of concentration and assembly time. It has been observed that the density of SWNTs network increases from 0.6 µm−2 to 2.1 µm−2, as the average on-state current (Ion) increases from 0.5 mA to 1.47 mA. The device has a current on/off ratio (Ion/Ioff) of 1.3×104 when Ion reaches to 1.34 mA.  相似文献   

6.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

7.
LiCaAlF6 (LiCAF) crystals doped with two different ions (europium and lead) have been investigated as potential new dosimetric materials. The stability of thermally stimulated luminescence (TSL) glow peaks in LiCAF:Eu was evaluated by means of the initial rise technique. The decay times at room temperature of the traps related to the dosimetric glow peaks were found to range between 40 and 2 × 104 years confirming the good dosimetric characteristics of this crystal. The glow curve of LiCAF:Pb is dominated by a peak at approximately 300 °C emitting in the UV region (3P0,11S0 transition of Pb2+) superimposed to a very broad structure at lower temperature (20–200 °C) featuring recombination at an intrinsic defect centre. The anomalous behavior of the low temperature structure during thermal cleaning procedures prevented any reliable numerical analysis of the TSL glow peak at 300 °C.  相似文献   

8.
Dye-sensitized solar cells (DSSCs) use two glass substrates (photo electrode and counter electrode) coated with fluorine-doped tin oxide (FTO) to harvest light into the cell and to collect electrons. The space between the photo electrode and the counter electrode are filled with a liquid type electrolyte for electron transfer into the cell. Therefore, an appropriate sealing method is required to prevent the liquid electrolyte leaking out. In this paper, a simple CO2 laser beam with TEM00 mode excited by a 60 Hz AC discharge was used to seal two glass substrates coated with FTO for the fabrication of DSSCs. The sealing technique improved the durability and stability of the DSSCs. The optimal conditions for the sealing of the DSSCs are related to the pin-hole diameter, the discharge current and the moving velocity of the target. Especially, the CO2 laser beam is used as a heat source that is precisely controlled by the pin-hole, which plays an important role in adjusting its spot size. From these results, the maximum laser power was found to be 40 W at 18 Torr and 35 mA. In order to achieve the best sealing quality, the following parameters are required: a pin-hole diameter of 4 mm, input voltage of 10.73 kV, discharge current of 9.31 mA, moving velocity of 1 mm/s and distance from the target surface of 26.5 cm. Scanning electron microscope images show that the sealing quality obtained using the CO2 laser beam is superior to that obtained using a hot press or soldering iron.  相似文献   

9.
《Solid State Ionics》2006,177(9-10):847-850
LiCr0.15Mn1.85O4 spinel has been successfully synthesized by glycine–nitrate method (GNM). The presence of pure spinel phase was confirmed by long term XRPD measurements and the Rietveld structural refinement. Lattice parameter was estimated to be 8.2338 Å. Average particle size of prepared powder material is below 500 nm. The BET surface area is 9.6 m2 g 1. As a cathode material for lithium batteries LiCr0.15Mn1.85O4 shows initial discharge capacity of 110 mA h g 1 and capacity retention of 83% after 50 cycles.  相似文献   

10.
We have investigated the electrical and optical properties of an nBn based Type-II InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature-dependent dark current, responsivity and detectivity were measured. At T = 77 K and Vb = 0.1 V, with two orders of magnitude change in doping concentration, the dark current density increased from ~0.3 mA/cm2 to ~0.3 A/cm2. We attribute this to a depletion region that exists at the AlGaSb barrier and the SLS absorber interface. The device with non-intentionally doped absorption region demonstrated the lowest dark current density (0.3 mA/cm2 at 0.1 V) with a specific detectivity D1 at zero bias equal to 1.2 × 1011 Jones at 77 K. The D1 value decreased to 6 × 1010 cm Hz1/2/W at 150 K. This temperature dependence is significantly different from conventional PIN diodes, in which the D1 decreases by over two orders of magnitude from 77 K to 150 K, making nBn devices a promising alternative for higher operating temperatures.  相似文献   

11.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

12.
The conditions necessary for achieving a stable bipolar ion generation (in the order of 106 ion/cm3) and lower ozone concentration (less than 50 ppb) using a surface discharge microplasma device (SMD) by adjusting the applied voltage and frequency were experimentally determined and investigated. Measurements of the discharge current characteristics of the SMD revealed saturation against the frequency (1.5–2.5 kHz, depending on the applied voltage). The ion and ozone concentrations both increased in step with the discharge current in the lower frequency region. The ion concentration reached equilibrium in the frequency range of 200–500 Hz, and the point of equilibrium within that range depended on the applied voltage. The ozone concentration did not reach equilibrium under our experimental conditions (ozone concentration < 100 ppb). The kinetics of the ion/ozone generation rate with a focus on the plasma reaction and recombination of bipolar ions is discussed.  相似文献   

13.
Flexible organic light-emitting devices (FOLEDs) based on multiple quantum well (MQW) structures, which consist of alternate layers of 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4-TCNQ) and 4,4′,4″-tris-(3-methylphenylphe-nylamino)tripheny-lamine (m-MTDATA) have been fabricated. The Alq3-based device with double quantum well (DQW) structure exhibits the remarkable electroluminescent (EL) performances for the brightness of 23,500 cd/m2 at 14 V and the maximum current efficiency of 7.0 cd/A at 300.3 mA/cm2, respectively, which are greatly improved by 114% and 56% compared with the brightness of 10,958 cd/m2 at 14 V and the maximum current efficiency of 4.5 cd/A at 174.0 mA/cm2 for the conventional device without MQW structures. These results demonstrate that the EL performances of FOLEDs could be greatly improved by utilizing the novel MQW structures, and the reason for this improvement has also been explained by the effect of interfacial dipole and interfacial doping between F4-TCNQ and m-MTDATA in this article.  相似文献   

14.
Owing to high-energy density of rechargeable lithium-ion batteries (LIBs), they have been investigated as an efficient electrochemical power sources for various energy applications. High theoretical capacities of tin oxide (SnO2) anodes have led us a path to meet the ever-growing demands in the development of high-performance electrode materials for LIBs. In this paper, a facile approach is described for the synthesis of porous low-dimensional nanoparticles and nanorods of SnO2 for application in LIBs with the help of Tween-80 as a surfactant. The SnO2 samples synthesized at different reaction temperatures produced porous nanoparticles and nanorods with average diameters of ~7–10 nm and ~70–110 nm, respectively. The SnO2 nanoparticle electrodes exhibit a high reversible charge capacity of 641.1 mAh/g at 200 mA/g after 50 cycles, and a capacity of 340 mAh/g even at a high current density of 1000 mA/g during the rate tests, whereas the porous nanorod electrodes delivers only 526.3 mAh/g at 200 mA/g after 50 cycles and 309.4 mAh/g at 1000 mA/g. It is believed that finer sized SnO2 nanoparticles are much more favorable to trap more Li+ ion during electrochemical cycling, resulting in a large irreversible capacity. In contrast, rapid capacity fading was observed for the porous nanorods, which is the result of their pulverization resulting from repeated cycling.  相似文献   

15.
δ-MnO2 with the doping of Ni and Bi was prepared through a simple chemical precipitation/oxidation method. Its structure was confirmed by the X-ray diffraction tests. The results of cyclic voltammetry and galvanostatic charge–discharge tests showed that both the doping of Bi and Ni benefited the electrochemical activity of the MnO2 electrode. Compared to the un-doped electrode, the Bi-doped one showed larger discharge capacity and the Ni-doped one showed higher discharge potential and better cycleability. With the co-doping of 5 wt% Bi and 10 wt% Ni, the discharge capacity of the MnO2 electrode reached 252 mA h g?1 at a 0.2C rate and 116 mA h g?1 at a 1C rate, respectively. Its capacity remained in 105 mA h g?1 after 50 cycles at a 1C rate, but the capacity of a commercial electrolytic MnO2 electrode was only 37 mA h g?1.  相似文献   

16.
Low-voltage direct current was applied to beef, inoculated with Escherichia coli O157:H7 on the surface covered with a thin film of 0.15 M NaCl solution. Experiments were conducted with 15, 30, and 45 mA/cm2 currents; 1, 10 and 100 kHz frequencies; 30, 50 and 70% duty cycles, and 2, 8 and 16 min treatment durations. Increase in current intensity, frequency, duty cycle, and treatment duration increased the % reduction of E. coli. A maximum reduction of 98.9% was achieved. Sensory color analysis showed significant differences between treated and untreated beef. The maximum temperature rise of NaCl solution was 31.9 °C.  相似文献   

17.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

18.
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1–5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 °C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50–150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 °C along with relatively resolved glow peak at 180 °C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 °C along with two well defined peaks at ~215 and 275 °C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail.  相似文献   

19.
In this work we report fabrication of a nanocrystal (NC)-based hybrid organic–inorganic LED with structure of ITO/PEDOT:PSS/PVK/CdS-NCs/(Al or Mg:Ag). The hydrophilic CdS NCs were synthesized using a novel aqueous thermochemical method at 80 °C and sizes (around 2 nm) were controlled by thioglycolic acid (TGA) as the capping agent. The favorite feature of these NCs is their relatively high emission intensity and broad, near-white emission. The hydrophilic CdS NCs were successfully spin coated using Triton X-100 as the wetting agent. The fabricated LEDs demonstrated a turn on voltage about 7 V for Al metallic contact. The electroluminescence was a broad spectrum at 540 and 170 nm width, which was about 50 nm red shifted compared to photoluminescence spectra. The CIE color coordinates of the LED at (0.33, 0.43) demonstrated a near white light LED with an emission on green–yellow boundary of white. Annealing of the device up to 190 °C had a positive effect on the performance, possibly due to better contacts between layers. Replacing Al contacts with Mg:Ag reduced the turn-on voltage to 6 V and changed CIE color coordinate to (0.32, 0.41). The EL peak was also shifted to 525 nm, with a brightness of 15 Cd/m2 at working voltage of 15 V. The current efficiency and external quantum efficiency of device were 0.08 Cd/A and 0.03% at current densities higher than 10 mA/cm2.  相似文献   

20.
Pure and lanthanum (La) doped ZnO nanorods were synthesized via co-precipitation method. The structure and morphology of as grown ZnO and La-ZnO nanoparticles were studied using transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) methods. The values of remnant polarization and coercive field were found to be 0.027 μC/cm2 and 1.33 kV/cm, respectively, for as grown La-ZnO nanostructures. High Curie temperature (276 °C) for doped ZnO was observed in dielectric study. Piezoelectric coefficient at room temperature was found to be 101.30 pm/V. I-V characteristics were studied for both pure and doped ZnO nanoparticles. Photo-anodes of dye-sensitized solar cells (DSSCs) were made using ZnO and La-ZnO nanorods. The conversion efficiency and short circuit current density of La-ZnO nanorods based DSSC were 0.36% and 1.31 mA/cm2, respectively, which were found to be largely enhanced when compared with that of pure ZnO based DSSC (0.20% and 0.94 mA/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号