首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We address a truck scheduling problem that arises in intermodal container transportation, where containers need to be transported between customers (shippers or receivers) and container terminals (rail or maritime) and vice versa. The transportation requests are handled by a trucking company which operates several depots and a fleet of homogeneous trucks that must be routed and scheduled to minimize the total truck operating time under hard time window constraints imposed by the customers and terminals. Empty containers are considered as transportation resources and are provided by the trucking company for freight transportation. The truck scheduling problem at hand is formulated as Full-Truckload Pickup and Delivery Problem with Time Windows (FTPDPTW) and is solved by a 2-stage heuristic solution approach. This solution method was specially designed for the truck scheduling problem but can be applied to other problems as well. We assess the quality of our solution approach on several computational experiments.  相似文献   

2.
This paper develops an optimization modeling approach for analyzing the trade-off between the cost of a larger fleet of tractors and the cost of repositioning tractors for a trucking company operating a consolidation network, such as a less-than-truckload (LTL) company. Specifically, we analyze the value of using extra tractor repositioning moves (in addition to the ones required to balance resources throughout the network) to reduce the fixed costs of owning or leasing a tractor fleet during a planning horizon. We develop network flow optimization models, some with side constraints and nonlinear objective functions, using event-based, time-expanded networks to determine appropriate fleet sizes and extra repositioning moves under different repositioning strategies, and we compare the optimal costs of the strategies. For repositioning costs, two different cost schemes are explored: one linear and one nonlinear. Computational experiments using real data from a national LTL carrier compare the total system costs obtained with four different strategies and show that extra repositioning may indeed enable fleet size reductions and concomitant cost savings.  相似文献   

3.
This paper addresses a practical liner ship fleet deployment problem with week-dependent container shipment demand and transit time constraint, namely, maximum allowable transit time in container routing between a pair of ports. It first uses the space–time network approach to generate practical container routes subject to the transit time constraints. This paper proceeds to formulate the fleet deployment problem based on the practical container routes generated. In view of the intractability of the formulation, two relaxation models providing lower bounds are built: one requires known container shipment demand at the fleet deployment stage, and the other assumes constant container shipment demand over the planning horizon. An efficient global optimization algorithm is subsequently proposed. Extensive numerical experiments on the shipping data of a global liner shipping company demonstrate the applicability of the proposed model and algorithm.  相似文献   

4.
This paper investigates a drayage problem, where a fleet of trucks must ship container loads from a port to importers and from exporters to the same port, without separating trucks and containers during customer service. We present three formulations for this problem that are valid when each truck carries one container. For the third formulation, we also assume that the arc costs are equal for all trucks, and then we prove that its continuous relaxation admits integer optimal solutions by checking that its constraint matrix is totally unimodular. Under the same hypothesis on costs, even the continuous relaxations of the first two models are proved to admit an integer optimal solution. Finally, the third model is transformed into a circulation problem, that can be solved by efficient network algorithms.  相似文献   

5.
We propose a tabu search heuristic for the location/allocation problem with balancing requirements. This problem typically arises in the context of the medium term management of a fleet of containers of multiple types, where container depots have to be selected, the assignment of customers to depots has to be established for each type of container, and the interdepot container traffic has to be planned to account for differences in supplies and demands in various zones of the geographical territory served by a container shipping company. It is modeled as a mixed integer program, which combines zero-one location variables and a multicommodity network flow structure. Extensive computational results on a set of benchmark problems and comparisons with an efficient dual ascent procedure are reported. These show that tabu search is a competitive approach for this class of problems.  相似文献   

6.
The aim of this paper is to solve a real-world problem proposed by an international company operating in Spain and modeled as a variant of the Open Vehicle Routing Problem in which the makespan, i.e., the maximum time spent on the vehicle by one person, must be minimized. A competitive multi-start algorithm, able to obtain high quality solutions within reasonable computing time is proposed. The effectiveness of the algorithm is analyzed through computational testing on a set of 19 school-bus routing benchmark problems from the literature, and on 9 hard real-world problem instances.  相似文献   

7.
Network Design for Express Shipment Delivery   总被引:5,自引:0,他引:5  
Service network design problems arise at airlines (passenger and cargo), trucking companies, railroads, etc., wherever there is a need to determine cost minimizing routes and schedules, given constraints on resource availability and level of service. We focus on a particular service network design application, namely, the express shipment delivery problem, and we develop models and a solution technique designed specifically for large-scale express delivery problems with time windows. Using data from an express delivery company, we demonstrate that our approach can produce savings in total operating costs and provide a valuable tool for making decisions at strategic and tactical levels.  相似文献   

8.
Just-in-time (JIT) trucking service, i.e., arriving at customers within specified time windows, has become the norm for freight carriers in all stages of supply chains. In this paper, a JIT pickup/delivery problem is formulated as a stochastic dynamic traveling salesman problem with time windows (SDTSPTW). At a customer location, the vehicle either picks up goods for or delivers goods from the depot, but does not provide moving service to transfer goods from one location to another. Such routing problems are NP-hard in deterministic settings, and in our context, complicated further by the stochastic, dynamic nature of the problem. This paper develops an efficient heuristic for the SDTSPTW with hard time windows. The heuristic is shown to be useful both in controlled numerical experiments and in applying to a real-life trucking problem.  相似文献   

9.
The problem reported in this paper is a variant of the classical vehicle routing problem, where customer requests for a transportation company can be served either by its private fleet of vehicles or assigned to an external common carrier. The latter case occurs if the demand exceeds the total capacity of the private fleet or if it is more economical to do so. Accordingly, the objective is to minimize the variable and fixed costs of the private fleet plus the costs charged by the common carrier. A tabu search heuristic with a neighbourhood structure based on ejection chains is proposed to solve this problem. It is empirically demonstrated that this algorithm outperforms the best approaches reported in the literature on a set of benchmark instances with both homogeneous and heterogeneous fleets.  相似文献   

10.
In this paper, we address the problem of determining the optimal fleet size for a vehicle rental company and derive analytical results for its relationship to vehicle availability at each rental station in the company’s network of locations. This work is motivated by the recent surge in interest for bicycle and electric car sharing systems, one example being the French program Vélib (2010). We first formulate a closed queueing network model of the system, obtained by viewing the system from the vehicle’s perspective. Using this framework, we are able to derive the asymptotic behavior of vehicle availability at an arbitrary rental station with respect to fleet size. These results allow us to analyze imbalances in the system and propose some basic principles for the design of system balancing methods. We then develop a profit-maximizing optimization problem for determining optimal fleet size. The large-scale nature of real-world systems results in computational difficulties in obtaining this exact solution, and so we provide an approximate formulation that is easier to solve and which becomes exact as the fleet size becomes large. To illustrate our findings and validate our solution methods, we provide numerical results on some sample networks.  相似文献   

11.
In this paper, we consider the problem of delivering large volumes of products from a single supplier to a set of commercial outlets with the use of a non-homogeneous fleet of trucks. The non-homogeneity implies different costs and, hence, traditional methods which measure miles, hours, and/or number of trucks are not appropriate. The problem may be modeled as an elastic generalized assignment problem. A special purpose branch and bound algorithm is developed and a set of real-world distribution problems and solved.  相似文献   

12.
In this paper, we consider a multi-depot periodic vehicle routing problem which is characterized by the presence of a homogeneous fleet of vehicles, multiple depots, multiple periods, and two types of constraints that are often found in reality, i.e., vehicle capacity and route duration constraints. The objective is to minimize total travel costs. To tackle the problem, we propose an efficient path relinking algorithm whose exploration and exploitation strategies enable the algorithm to address the problem in two different settings: (1) As a stand-alone algorithm, and (2) As a part of a co-operative search algorithm called integrative co-operative search. The performance of the proposed path relinking algorithm is evaluated, in each of the above ways, based on standard benchmark instances. The computational results show that the developed PRA performs well, in both solution quality and computational efficiency.  相似文献   

13.
The problem studied in this article arises from the distribution of soft drinks and collection of recyclable containers in a Quebec-based company. It can be modelled as a variant of the vehicle routing problem with a heterogeneous vehicle fleet, time windows, capacity and volume constraints, and an objective function combining routing costs and the revenue resulting from the sale of recyclable material. Three construction heuristics and an improvement procedure are developed for the problem. Comparative tests are performed on a real-life instance and on 10 randomly generated instances.  相似文献   

14.
The vehicle scheduling problem, arising in public transport bus companies, addresses the task of assigning buses to cover a given set of timetabled trips with consideration of practical requirements, such as multiple depots and vehicle types as well as depot capacities. An optimal schedule is characterized by minimal fleet size and minimal operational costs including costs for unloaded trips and waiting time. This paper discusses the multi-depot, multi-vehicle-type bus scheduling problem (MDVSP), involving multiple depots for vehicles and different vehicle types for timetabled trips. We use time–space-based instead of connection-based networks for MDVSP modeling. This leads to a crucial size reduction of the corresponding mathematical models compared to well-known connection-based network flow or set partitioning models. The proposed modeling approach enables us to solve real-world problem instances with thousands of scheduled trips by direct application of standard optimization software. To our knowledge, the largest problems that we solved to optimality could not be solved by any existing exact approach. The presented research results have been developed in co-operation with the provider of transportation planning software PTV AG. A software component to support planners in public transport was designed and implemented in context of this co-operation as well.  相似文献   

15.
The paper starts with a discussion of the simple fleet size problem. It is shown that this simple problem can be formulated as a linear program.The second part of the paper consists of an actual case study. The fleet concerned is faced with highly seasonal demand which can be met by the firm's own vehicles or by outside hire. There are two types of vehicle, both of which are available in six different sizes. Linear programming was used to find the optimum size and composition of the company fleet. The results, which were substantially implemented, recommended a smaller company fleet and concentration on larger and more flexible vehicles.  相似文献   

16.
Because of the extreme imbalance in intercontinental trade, the repositioning of empty containers creates a significant problem for shipping companies. There are many efforts to reduce the cost of repositioning empty containers, one of which is a foldable container. This paper proposes a robust formulation for the empty container repositioning problem considering foldable containers under demand uncertainty. The robust formulation can be used as a tractable approximation of a multistage stochastic programming formulation which is computationally intractable. Moreover, the robust formulation requires only limited information about the distribution of demand to replicate real-world situations. Computational results show that the proposed formulation performs well in terms of operating costs and there exists a significant cost-saving effect when foldable containers are used in maritime transportation.  相似文献   

17.
This paper proposes a short-term liner ship fleet planning problem by taking into account container transshipment and uncertain container shipment demand. Given a liner shipping service network comprising a number of ship routes, the problem is to determine the numbers and types of ships required in the fleet and assign each of these ships to a particular ship route to maximize the expected value of the total profit over a short-term planning horizon. These decisions have to be made prior to knowing the exact container shipment demand, which is affected by some unpredictable and uncontrollable factors. This paper thus formulates this realistic short-term planning problem as a two-stage stochastic integer programming model. A solution algorithm, integrating the sample average approximation with a dual decomposition and Lagrangian relaxation approach, is then proposed. Finally, a numerical example is used to evaluate the performance of the proposed model and solution algorithm.  相似文献   

18.
The problem of scheduling workers at a hub of a trucking system for the stripping and loading of the trucks and the determination of the optimal number of workers is a difficult problem. The trucks arrive at the facility at different (but known) times and may have their own scheduled departure times. This problem is like a set partitioning problem but with a side constraint pertaining to the dynamic arrival of the trucks. We develop a procedure to solve this problem that is based on the column generation technique, and the solution of a set covering problem to obtain the integer solution. The performance of the procedure is demonstrated by applying it to the real-life data obtained from a trucking company. Its effectiveness is illustrated by comparing it with a lower bound and a well-known heuristic procedure.  相似文献   

19.
针对港口堆场与内陆腹地客户之间的空重集装箱运输问题,本文结合甩挂运输的特点将客户的进出港需求拆分为相互关联的空箱和重箱任务,实现单个决策期内运输系统中集装箱的状态转换与回收工作。状态转换受集装箱货物装卸时间影响,因此需要合理调度牵引车路线,以满足前置任务约束。针对此类问题的特点,本文建立了空重箱运输任务整合的整数规划模型,并设计了基于集群选择的改进蚁群算法进行求解。最后,通过不同规模的仿真算例与现有数学模型及优化算法对比结果可知,本文所提出的改进蚁群算法在此类问题的最优解搜索中具有良好的稳定性和求解效率。  相似文献   

20.
This article analyzes the fleet management problem faced by a firm when deciding which vehicles to add to its fleet. Such a decision depends not only on the expected mileage and tasks to be assigned to the vehicle but also on the evolution of fuel and CO2 emission prices and on fuel efficiency. This article contributes to the literature on fleet replacement and sustainable operations by proposing a general decision support system for the fleet replacement problem using stochastic programming and conditional value at risk (CVaR) to account for uncertainty in the decision process. The article analyzes how the CVaR associated with different types of vehicle is affected by the parameters in the model by reporting on the results of a real-world case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号