首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
One-mode three-way overlapping cluster analysis   总被引:1,自引:0,他引:1  
The present paper introduces an overlapping cluster analysis model and an associated algorithm that can analyze one-mode three-way similarities. The present model is an extension of ADCLUS model, and the present algorithm is based on the MAPCLUS algorithm. In the present model, one-mode three-way similarities are represented by the sum of the numerical weights of clusters to which any triplet of objects belongs. The present model and algorithm were applied to joint purchase data, and compared the result with that of MAPCLUS to show that the present model is effective in representing one-mode three-way similarities.  相似文献   

2.
Fitting semiparametric clustering models to dissimilarity data   总被引:1,自引:0,他引:1  
The cluster analysis problem of partitioning a set of objects from dissimilarity data is here handled with the statistical model-based approach of fitting the “closest” classification matrix to the observed dissimilarities. A classification matrix represents a clustering structure expressed in terms of dissimilarities. In cluster analysis there is a lack of methodologies widely used to directly partition a set of objects from dissimilarity data. In real applications, a hierarchical clustering algorithm is applied on dissimilarities and subsequently a partition is chosen by visual inspection of the dendrogram. Alternatively, a “tandem analysis” is used by first applying a Multidimensional Scaling (MDS) algorithm and then by using a partitioning algorithm such as k-means applied on the dimensions specified by the MDS. However, neither the hierarchical clustering algorithms nor the tandem analysis is specifically defined to solve the statistical problem of fitting the closest partition to the observed dissimilarities. This lack of appropriate methodologies motivates this paper, in particular, the introduction and the study of three new object partitioning models for dissimilarity data, their estimation via least-squares and the introduction of three new fast algorithms.  相似文献   

3.
We explore an approach to possibilistic fuzzy clustering that avoids a severe drawback of the conventional approach, namely that the objective function is truly minimized only if all cluster centers are identical. Our approach is based on the idea that this undesired property can be avoided if we introduce a mutual repulsion of the clusters, so that they are forced away from each other. We develop this approach for the possibilistic fuzzy c-means algorithm and the Gustafson–Kessel algorithm. In our experiments we found that in this way we can combine the partitioning property of the probabilistic fuzzy c-means algorithm with the advantages of a possibilistic approach w.r.t. the interpretation of the membership degrees.  相似文献   

4.
There are many data clustering techniques available to extract meaningful information from real world data, but the obtained clustering results of the available techniques, running time for the performance of clustering techniques in clustering real world data are highly important. This work is strongly felt that fuzzy clustering technique is suitable one to find meaningful information and appropriate groups into real world datasets. In fuzzy clustering the objective function controls the groups or clusters and computation parts of clustering. Hence researchers in fuzzy clustering algorithm aim is to minimize the objective function that usually has number of computation parts, like calculation of cluster prototypes, degree of membership for objects, computation part for updating and stopping algorithms. This paper introduces some new effective fuzzy objective functions with effective fuzzy parameters that can help to minimize the running time and to obtain strong meaningful information or clusters into the real world datasets. Further this paper tries to introduce new way for predicting membership, centres by minimizing the proposed new fuzzy objective functions. And experimental results of proposed algorithms are given to illustrate the effectiveness of proposed methods.  相似文献   

5.
Based on inter-cluster separation clustering (ICSC) fuzzy inter-cluster separation clustering (FICSC) deals with all the distances between the cluster centers, maximizes these distances and obtains the better performances of clustering. However, FICSC is sensitive to noises the same as fuzzy c-means (FCM) clustering. Possibilistic type of FICSC is proposed to combine FICSC and possibilistic c-means (PCM) clustering. Mixed fuzzy inter-cluster separation clustering (MFICSC) is presented to extend possibilistic type of FICSC because possibilistic type of FICSC is sensitive to initial cluster centers and always generates coincident clusters. MFICSC can produce both fuzzy membership values and typicality values simultaneously. MFICSC shows good performances in dealing with noisy data and overcoming the problem of coincident clusters. The experimental results with data sets show that our proposed MFICSC holds better clustering accuracy, little clustering time and the exact cluster centers.  相似文献   

6.
Medoid-based fuzzy clustering generates clusters of objects based on relational data, which records pairwise similarities or dissimilarities among objects. Compared with single-medoid based approaches, our recently proposed fuzzy clustering with multiple-weighted medoids has shown superior performance in clustering via experimental study. In this paper, we present a new version of fuzzy relational clustering in this family called fuzzy clustering with multi-medoids (FMMdd). Based on the new objective function of FMMdd, update equations can be derived more conveniently. Moreover, a unified view of FMMdd and two existing fuzzy relational approaches fuzzy c-medoids (FCMdd) and assignment-prototype (A-P) can be established, which allows us to conduct further analytical study to investigate the effectiveness and feasibility of the proposed approach as well as the limitations of existing ones. The robustness of FMMdd is also investigated. Our theoretical and numerical studies show that the proposed approach produces good quality of clusters with rich cluster-based information and it is less sensitive to noise.  相似文献   

7.
We propose a new technique to perform unsupervised data classification (clustering) based on density induced metric and non-smooth optimization. Our goal is to automatically recognize multidimensional clusters of non-convex shape. We present a modification of the fuzzy c-means algorithm, which uses the data induced metric, defined with the help of Delaunay triangulation. We detail computation of the distances in such a metric using graph algorithms. To find optimal positions of cluster prototypes we employ the discrete gradient method of non-smooth optimization. The new clustering method is capable to identify non-convex overlapped d-dimensional clusters.  相似文献   

8.
The field of cluster analysis is primarily concerned with the partitioning of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the fuzzy clustering problem, where each data point is to be assigned to (possibly) several clusters, with a membership grade assigned to each data point that reflects the likelihood of the data point belonging to that cluster. The fuzzy clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities. This construct is embedded within a specialized branch-and-bound (B&B) algorithm to solve the problem to global optimality. Computational experience is reported using several standard data sets from the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular fuzzy c-means algorithmic technique and the commercial global optimizer BARON.  相似文献   

9.
《Fuzzy Sets and Systems》2007,158(19):2095-2117
Cluster analysis aims at identifying groups of similar objects, and helps to discover distribution of patterns and interesting correlations in large data sets. Especially, fuzzy clustering has been widely studied and applied in a variety of key areas and fuzzy cluster validation plays a very important role in fuzzy clustering. This paper introduces the fundamental concepts of cluster validity, and presents a review of fuzzy cluster validity indices available in the literature. We conducted extensive comparisons of the mentioned indices in conjunction with the Fuzzy C-Means clustering algorithm on a number of widely used data sets, and make a simple analysis of the experimental results.  相似文献   

10.
Clustering algorithms divide up a dataset into a set of classes/clusters, where similar data objects are assigned to the same cluster. When the boundary between clusters is ill defined, which yields situations where the same data object belongs to more than one class, the notion of fuzzy clustering becomes relevant. In this course, each datum belongs to a given class with some membership grade, between 0 and 1. The most prominent fuzzy clustering algorithm is the fuzzy c-means introduced by Bezdek (Pattern recognition with fuzzy objective function algorithms, 1981), a fuzzification of the k-means or ISODATA algorithm. On the other hand, several research issues have been raised regarding both the objective function to be minimized and the optimization constraints, which help to identify proper cluster shape (Jain et al., ACM Computing Survey 31(3):264–323, 1999). This paper addresses the issue of clustering by evaluating the distance of fuzzy sets in a feature space. Especially, the fuzzy clustering optimization problem is reformulated when the distance is rather given in terms of divergence distance, which builds a bridge to the notion of probabilistic distance. This leads to a modified fuzzy clustering, which implicitly involves the variance–covariance of input terms. The solution of the underlying optimization problem in terms of optimal solution is determined while the existence and uniqueness of the solution are demonstrated. The performances of the algorithm are assessed through two numerical applications. The former involves clustering of Gaussian membership functions and the latter tackles the well-known Iris dataset. Comparisons with standard fuzzy c-means (FCM) are evaluated and discussed.  相似文献   

11.
The paper advocates the use of a new fuzzy-based clustering algorithm for document categorization. Each document/datum will be represented as a fuzzy set. In this respect, the fuzzy clustering algorithm, will be constrained additionally in order to cluster fuzzy sets. Then, one needs to find a metric measure in order to detect the overlapping between documents and the cluster prototype (category). In this respect, we use one of the interclass probabilistic reparability measures known as Bhattacharyya distance, which will be incorporated in the general scheme of the fuzzy c-means algorithm for measuring the overlapping between fuzzy sets. This enables the introduction of fuzziness in the document clustering in the sense that it allows a single document to belong to more than one category. This is in line with semantic multiple interpretations conveyed by single words, which support multiple membership to several classes. Performances of the algorithms will be illustrated using a case study from the construction sector.  相似文献   

12.
A new variable selection algorithm is developed for clustering based on mode association. In conventional mixture-model-based clustering, each mixture component is treated as one cluster and the separation between clusters is usually measured by the ratio of between- and within-component dispersion. In this article, we allow one cluster to contain several components depending on whether they merge into one mode. The extent of separation between clusters is quantified using critical points on the ridgeline between two modes, which reflects the exact geometry of the density function. The computational foundation consists of the recently developed Modal expectation–maximization (MEM) algorithm which solves the modes of a Gaussian mixture density, and the Ridgeline expectation–maximization (REM) algorithm which solves the ridgeline passing through the critical points of the mixed density of two unimode clusters. Forward selection is used to find a subset of variables that maximizes an aggregated index of pairwise cluster separability. Theoretical analysis of the procedure is provided. We experiment with both simulated and real datasets and compare with several state-of-the-art variable selection algorithms. Supplemental materials including an R-package, datasets, and appendices for proofs are available online.  相似文献   

13.
In this paper, we propose a new kernel-based fuzzy clustering algorithm which tries to find the best clustering results using optimal parameters of each kernel in each cluster. It is known that data with nonlinear relationships can be separated using one of the kernel-based fuzzy clustering methods. Two common fuzzy clustering approaches are: clustering with a single kernel and clustering with multiple kernels. While clustering with a single kernel doesn’t work well with “multiple-density” clusters, multiple kernel-based fuzzy clustering tries to find an optimal linear weighted combination of kernels with initial fixed (not necessarily the best) parameters. Our algorithm is an extension of the single kernel-based fuzzy c-means and the multiple kernel-based fuzzy clustering algorithms. In this algorithm, there is no need to give “good” parameters of each kernel and no need to give an initial “good” number of kernels. Every cluster will be characterized by a Gaussian kernel with optimal parameters. In order to show its effective clustering performance, we have compared it to other similar clustering algorithms using different databases and different clustering validity measures.  相似文献   

14.
土壤是一个多性状的连续体,其分类的首选方法是模糊聚类分析.但是模糊聚类分析中现有的基于模糊等价关系的动态聚类法和模糊c-均值法各有利弊,采用其中一种方法聚类肯定存在不足.为此集成两种聚类方法的优点,避其缺点,提出了用基于模糊等价关系的动态聚类方法和方差分析方法确定聚类数目和初始聚类中心,再用模糊c-均值法决定最终分类结果的集成算法,并将其应用到松花江流域土壤分类中,得到了较为切合实际的分类结果.  相似文献   

15.
The paper improves existing combinatorial bounds on probability of overfitting. A new bound is based on partitioning of a set of classifiers into non-overlapping clusters, and then embedding each cluster into a superset with known exact formula for the probability of overfitting. Such approach makes the bound sharper because it accounts for similarities between classifiers within each cluster.  相似文献   

16.
Traditional c-means clustering partitions a group of objects into a number of non-overlapping sets. Rough sets provide more flexible and objective representation than classical sets with hard partition and fuzzy sets with subjective membership function for a given dataset. Rough c-means clustering and its extensions were introduced and successfully applied in many real life applications in recent years. Each cluster is represented by a reasonable pair of lower and upper approximations. However, the most available algorithms pay no attention to the influence of the imbalanced spatial distribution within a cluster. The limitation of the mean iterative calculation function, with the same weight for all the data objects in a lower or upper approximation, is analyzed. A hybrid imbalanced measure of distance and density for the rough c-means clustering is defined, and a modified rough c-means clustering algorithm is presented in this paper. To evaluate the proposed algorithm, it has been applied to several real world data sets from UCI. The validity of this algorithm is demonstrated by the results of comparative experiments.  相似文献   

17.
To find optimal clusters of functional objects in a lower-dimensional subspace of data, a sequential method called tandem analysis, is often used, though such a method is problematic. A new procedure is developed to find optimal clusters of functional objects and also find an optimal subspace for clustering, simultaneously. The method is based on the k-means criterion for functional data and seeks the subspace that is maximally informative about the clustering structure in the data. An efficient alternating least-squares algorithm is described, and the proposed method is extended to a regularized method. Analyses of artificial and real data examples demonstrate that the proposed method gives correct and interpretable results.  相似文献   

18.
In this paper, a cluster analysis method based on fuzzy equivalence relation is proposed. At first, the distance formula between two trapezoidal fuzzy numbers is used to aggregate subjects' linguistic assessments about attributes ratings to obtain the compatibility relation. Then a fuzzy equivalence relation based on the fuzzy compatibility relation can be constructed. Finally, using a cluster validity index to determine the best number of clusters and taking suitable λ-cut value, the clustering analysis can be effectively implemented. By utilizing this clustering analysis, the subjects' fuzzy assessments with various rating attitudes can be taken into account in the aggregation process to assure more convincing and accurate cluster analysis.  相似文献   

19.
Fuzzy c-means clustering algorithm (FCM) can provide a non-parametric and unsupervised approach to the cluster analysis of data. Several efforts of fuzzy clustering have been undertaken by Bezdek and other researchers. Earlier studies in this field have reported problems due to the setting of optimum initial condition, cluster validity measure, and high computational load. More recently, the fuzzy clustering has benefited of a synergistic approach with Genetic Algorithms (GA) that play the role of an useful optimization technique that helps to better tolerate some classical drawbacks, such as sensitivity to initialization, noise and outliers, and susceptibility to local minima. We propose a genetic-level clustering methodology able to cluster objects represented by R p spaces. The unsupervised cluster algorithm, called SFCM (Spatial Fuzzy c-Means), is based on a fuzzy clustering c-means method that searches the best fuzzy partition of the universe assuming that the evaluation of each object with respect to some features is unknown, but knowing that it belongs to circular regions of R 2 space. Next we present a Java implementation of the algorithm, which provides a complete and efficient visual interaction for the setting of the parameters involved into the system. To demonstrate the applications of SFCM, we discuss a case study where it is shown the generality of our model by treating a simple 3-way data fuzzy clustering as example of a multicriteria optimization problem.  相似文献   

20.
Recent work in the field of cluster analysis has focused on designing algorithms that address the issue of ever growing datasets and provide meaningful solutions for data with high cardinality and/or dimensionality, under the natural restriction of limited resources. Within this line of research, we propose a method drawing on the principles of projection pursuit and grid partitioning, which focuses on reducing computational requirements for large datasets without loss of performance. To achieve that, we rely on procedures such as sampling of objects, feature selection, and quick density estimation using histograms. The present algorithm searches for low-density points in potentially favorable one-dimensional projections, and partitions the data by a hyperplane passing through the best split point found. Tests on synthetic and reference data indicate that our method can quickly and efficiently recover clusters that are distinguishable from the remaining objects on at least one direction; linearly nonseparable clusters are usually subdivided. The solution is robust in the presence of noise in moderate levels, and when the clusters are partially overlapping. An implementation of the algorithm is available online, as supplemental material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号