首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider the single machine past-sequence-dependent (p-s-d) setup times scheduling problems with general position-dependent and time-dependent learning effects. By the general position-dependent and time-dependent learning effects, we mean that the actual processing time of a job is not only a function of the total normal processing times of the jobs already processed, but also a function of the job’s scheduled position. The setup times are proportional to the length of the already processed jobs. We consider the following objective functions: the makespan, the total completion time, the sum of the θth (θ ? 0) power of job completion times, the total lateness, the total weighted completion time, the maximum lateness, the maximum tardiness and the number of tardy jobs. We show that the problems of makespan, the total completion time, the sum of the θth (θ ? 0) power of job completion times and the total lateness can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem, the maximum lateness minimization problem, maximum tardiness minimization problem and the number of tardy jobs minimization problem can be solved in polynomial time under certain conditions.  相似文献   

2.
We study graph multicoloring problems, motivated by the scheduling of dependent jobs on multiple machines. In multicoloring problems, vertices have lengths which determine the number of colors they must receive, and the desired coloring can be either contiguous (nonpreemptive schedule) or arbitrary (preemptive schedule). We consider both the sum-of-completion times measure, or the sum of the last color assigned to each vertex, as well as the more common makespan measure, or the number of colors used. In this paper, we study two fundamental classes of graphs: planar graphs and partial k-trees. For both classes, we give a polynomial time approximation scheme (PTAS) for the multicoloring sum, for both the preemptive and nonpreemptive cases. On the other hand, we show the problem to be strongly NP-hard on planar graphs, even in the unweighted case, known as the sum coloring problem. For a nonpreemptive multicoloring sum of partial k-trees, we obtain a fully polynomial time approximation scheme. This is based on a pseudo-polynomial time algorithm that holds for a general class of cost functions. Finally, we give a PTAS for the makespan of a preemptive multicoloring of partial k-trees that uses only O(log n) preemptions. These results are based on several properties of multicolorings and tools for manipulating them, which may be of more general applicability.  相似文献   

3.
In this paper, we consider the problem of scheduling n jobs on m machines in an open shop environment so that the sum of completion times or mean flow time becomes minimal. For this strongly NP-hard problem, we develop and discuss different constructive heuristic algorithms. Extensive computational results are presented for problems with up to 50 jobs and 50 machines, respectively. The quality of the solutions is evaluated by a lower bound for the corresponding preemptive open shop problem and by an alternative estimate of mean flow time. We observe that the recommendation of an appropriate constructive algorithm strongly depends on the ratio n/m.  相似文献   

4.
We show that the O(n log n) (where n is the number of jobs) shortest processing time (SPT) sequence is optimal for the single-machine makespan and total completion time minimization problems when learning is expressed as a function of the sum of the processing times of the already processed jobs. We then show that the two-machine flowshop makespan and total completion time minimization problems are solvable by the SPT sequencing rule when the job processing times are ordered and job-position-based learning is in effect. Finally, we show that when the more specialized proportional job processing times are in place, then our flowshop results apply also in the more general sum-of-job-processing-times-based learning environment.  相似文献   

5.
In the classical sequential assignment problem, “machines” are to be allocated sequentially to “jobs” so as to maximize the expected total return, where the return from an allocation of job j to machine k is the product of the value xj of the job and the weight pk of the machine. The set of m machines and their weights are given ahead of time, but n jobs arrive in sequential order and their values are usually treated as independent, identically distributed random variables from a known univariate probability distribution with known parameter values. In the paper, we consider a rank-based version of the sequential selection and assignment problem that minimizes the sum of weighted ranks of jobs and machines. The so-called “secretary problem” is shown to be a special case of our sequential assignment problem (i.e., m = 1). Due to its distribution-free property, our rank-based assignment strategy can be successfully applied to various managerial decision problems such as machine scheduling, job interview, kidney allocations for transplant, and emergency evacuation plan of patients in a mass-casualty situation.  相似文献   

6.
In this paper we consider the single-machine scheduling problems with both learning and deterioration effects. By the effects of learning and deterioration, we mean that job processing times are defined by functions of their starting times and positions in the sequence. It is shown that even with the introduction of learning effect and deteriorating jobs to job processing times, single-machine makespan minimization problem and the sum of the θth power of job completion times minimization problem remain polynomially solvable, respectively. But for the following objective functions: the weighted sum of completion times and the maximum lateness, this paper proves that the WSPT rule and the EDD rule can construct the optimal sequence under some special cases, respectively.  相似文献   

7.
This paper studies the single machine scheduling problems with learning effect and deteriorating jobs simultaneously. In this model, the processing times of jobs are defined as functions of their starting times and positions in a sequence. It is shown that even with the introduction of learning effect and deteriorating jobs to job processing times, the makespan, the total completion time and the sum of the kkth power of completion times minimization problems remain polynomially solvable, respectively. But for the following objective functions: the total weighted completion time and the maximum lateness, this paper proves that the shortest weighted processing time first (WSPT) rule and the earliest due-date first (EDD) rule can construct the optimal sequence under some special cases, respectively.  相似文献   

8.
In high-multiplicity scheduling problems, identical jobs are encoded in the efficient format of describing one of the jobs and the number of identical jobs. Similarly, identical machines are efficiently encoded in the same manner. We investigate parallel-machine, high-multiplicity problems, where there are three possible machine speed structures: identical, proportional, or unrelated. For the objectives of minimizing the sum of job completion times and minimizing the makespan, we consider both nonpreemptive and preemptive problems. For some problems, we develop polynomial time algorithms. For several problems, we demonstrate that the recognition versions can be solved in polynomial time, while the optimization versions require pseudo-polynomial time. We also show that changing from standard binary encoding to high-multiplicity encoding does not affect the complexity class of NP-complete problems. Received: April 1996 / Accepted: July 2000?Published online January 17, 2001  相似文献   

9.
We consider the problem of finding a minimum-length preemptive schedule for n jobs on m parallel machines. The problem is solvable in polynomial time, whether the machines are identical, uniform or unrelated. For identical or uniform machines, it is easy to obtain an optimal schedule in which the portion of a job that is assigned to a single machine is processed without interruption. We show that imposing this condition in the case of unrelated machines makes the problem NP-hard.  相似文献   

10.
The single machine scheduling problem with two types of controllable parameters, job processing times and release dates, is studied. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amounts. The objective is to minimize the sum of the total completion time of the jobs and the total compression cost. For the problem with equal release date compression costs we construct a reduction to the assignment problem. We demonstrate that if in addition the jobs have equal processing time compression costs, then it can be solved in O(n2) time. The solution algorithm can be considered as a generalization of the algorithm that minimizes the makespan and total compression cost. The generalized version of the algorithm is also applicable to the problem with parallel machines and to a range of due-date scheduling problems with controllable processing times.  相似文献   

11.
Scheduling dependent jobs on multiple machines is modeled by the graph multicoloring problem. In this paper we consider the problem of minimizing the average completion time of all jobs. This is formalized as the sum multicoloring problem: Given a graph and the number of colors required by each vertex, find a multicoloring which minimizes the sum of the largest colors assigned to the vertices. It reduces to the known sum coloring problem when each vertex requires exactly one color.This paper reports a comprehensive study of the sum multicoloring problem, treating three models: with and without preemptions, as well as co-scheduling where jobs cannot start while others are running. We establish a linear relation between the approximability of the maximum independent set problem and the approximability of the sum multicoloring problem in all three models, via a link to the sum coloring problem. Thus, for classes of graphs for which the independent set problem is ρ-approximable, we obtain O(ρ)-approximations for preemptive and co-scheduling sum multicoloring and O(ρ log n)-approximation for nonpreemptive sum multicoloring. In addition, we give constant ratio approximations for a number of fundamental classes of graphs, including bipartite, line, bounded degree, and planar graphs.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(19-20):4747-4755
We consider unrelated parallel machines scheduling problems involving resource dependent (controllable) processing times and deteriorating jobs simultaneously, i.e., the actual processing time of a job is a function of its starting time and its resource allocation. Two generally resource consumption functions, the linear and convex resource, were investigated. The objective is to find the optimal sequence of jobs and the optimal resource allocation separately. This paper focus on the objectives of minimizing a cost function containing makespan, total completion time, total absolute differences in completion times and total resource cost, and a cost function containing makespan, total waiting time, total absolute differences in waiting times and total resource cost. If the number of unrelated parallel machines is a given constant, we show that the problems remain polynomially solvable under the proposed model.  相似文献   

13.
In the routing open-shop problem, jobs are located at nodes of an undirected transportation network, and the machines travel on the network to execute jobs in the open-shop environment. The machines are initially located at the same node (depot) and must return to the depot after completing all the jobs. It is required to find a nonpreemptive schedule that minimizes the makespan. We prove that the problem is NP-hard even on a two-node network with two machines, and even on a two-node network with two jobs and m machines. We develop polynomial-time approximation heuristics and obtain bounds on their approximation performance.  相似文献   

14.
In this study, a bicriteria m-machine flowshop scheduling with sequence-dependent setup times is considered. The objective function of the problem is minimization of the weighted sum of total completion time and makespan. Only small size problems with up to 6 machines and 18 jobs can be solved by the proposed integer programming model. Also the model is tested on an example. We also proposed three heuristic approaches for solving large jobs problems. To solve the large sizes problems up to 100 jobs and 10 machines, special heuristics methods is used. Results of computational tests show that the proposed model is effective in solving problems.  相似文献   

15.
In this paper we consider the single-machine setup times scheduling with general effects of deterioration and learning. By the general effects of deterioration and learning, we mean that the actual job processing time is a general function of the processing times of the jobs already processed and its scheduled position. The setup times are proportional to the length of the already processed jobs, i.e., the setup times are past-sequence-dependent (p-s-d). We show that the problems to minimize the makespan, the sum of the δδth (δ>0δ>0) power of job completion times, the total lateness are polynomially solvable. We also show that the total weighted completion time minimization problem, the discounted total weighted completion time minimization problem, the maximum lateness (tardiness) minimization problem, the total tardiness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

16.
This paper studies single-machine scheduling problems with setup times which are proportionate to the length of the already scheduled jobs, that is, with past-sequence-dependent or p-s-d setup times. The following objective functions are considered: the maximum completion time (makespan), the total completion time, the total absolute differences in completion times and a bicriteria combination of the last two objective functions. It is shown that the standard single-machine scheduling problem with p-s-d setup times and any of the above objective functions can be solved in O(nlog n) time (where n is the number of jobs) by a sorting procedure. It is also shown that all of our results extend to a “learning” environment in which the p-s-d setup times are no longer linear functions of the already elapsed processing time due to learning effects.  相似文献   

17.
The paper deals with single machine scheduling problems with setup time considerations where the actual processing time of a job is not only a non-decreasing function of the total normal processing times of the jobs already processed, but also a non-increasing function of the job’s position in the sequence. The setup times are proportional to the length of the already processed jobs, i.e., the setup times are past-sequence-dependent (p-s-d). We consider the following objective functions: the makespan, the total completion time, the sum of the δth (δ ≥ 0) power of job completion times, the total weighted completion time and the maximum lateness. We show that the makespan minimization problem, the total completion time minimization problem and the sum of the δ th (δ ≥ 0) power of job completion times minimization problem can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

18.
Single-Machine Scheduling with Release Times and Tails   总被引:1,自引:0,他引:1  
We study the problem of scheduling jobs with release times and tails on a single machine with the objective to minimize the makespan. This problem is strongly NP-hard, however it is known to be polynomially solvable if all jobs have equal processing time P. We generalize this result and suggest an O(n 2 log nlog P) algorithm for the case when the processing times of some jobs are restricted to either P or 2P.  相似文献   

19.
The no-wait flow-shop scheduling problem (NWFSSP) with a makespan objective function is considered. As is well known, this problem is ????-hard for three or more machines. Therefore, it is interesting to consider special cases, i.e. special structured processing time matrices, that allow polynomial time solution algorithms. Furthermore, it is well known that the NWFSSP with a makespan objective function can be formulated as a travelling salesman problem (TSP). It is observed that special structured processing time matrices for the NWFSSP lead to special structured distance matrices for which the TSP is polynomially solvable. Using this observation, it is shown that some NWFSSPs with fixed processing times on all except two machines are well solvable while the others are conjectured to be ????-hard. Also, it is shown that NWFSSPs with a mean completion time objective function restricted to semi-ordered processing time matrices are easily solvable.  相似文献   

20.
We consider the problem of preemptive scheduling n jobs on two uniform parallel machines. All jobs have equal processing requirements. For each job we are given its due date. The objective is to find a schedule minimizing total tardiness ∑Ti. We suggest an O(n log n) algorithm to solve this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号