首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.  相似文献   

2.
The two-step preparation of compact and crystalline Sb2S3 thin films was firstly reported using the pyrolysis of the Sb-butyldithiocarbamate complex solution in DMF. The porous and amorphous Sb2S3 thin films were successfully prepared at 170 °C for 30 min, and then can be converted to compact and crystalline Sb2S3 thin films at 200 °C for 30 min or 300 °C for 2 min. The corresponding solar cells with the architecture of FTO/TiO2 compact layer/Sb2S3/spiro-OMeTAD/Au achieved the photoelectric conversion efficiency of 4.16% at 200 °C and 5.05% at 300 °C. The two-step preparation of the compact and crystalline Sb2S3 thin films can provide the feasible approach for the fabrication of various microstructure thin film solar cells and the low preparation temperature of 200 °C was also attractive to assemble the flexible Sb2S3 thin film solar cells.  相似文献   

3.
ZnS overlayers were deposited on the CdS quantum dot (QD)-assembled TiO2 films, where the CdS QDs were grown on the TiO2 by repeated cycles of the in situ chemical bath deposition (CBD). With increasing the CdS CBD cycles, the CdS QD-assembled TiO2 films were transformed from the TiO2 film partially covered by small CdS QDs (Type I) to that fully covered by large CdS QDs (Type II). The ZnS overlayers significantly improved the overall energy conversion efficiency of both Types I and II. The ZnS overlayers can act as the intermediate layer and energy barrier at the interfaces. However, the dominant effects of the ZnS overlayers were different for the Types I and II. For Type I, ZnS overlayer dominantly acted as the intermediate layer between the exposed TiO2 surface and the electrolyte, leading to the suppressed recombination rate for the TiO2/electrolyte and the significantly enhanced charge-collection efficiency. On the contrary, for Type II, it dominantly acted as the efficient energy barrier at the interface between the CdS QDs and the electrolyte, leading to the hindered recombination rate from the large CdS QDs to the electrolyte and thus enhanced electron injection efficiency.  相似文献   

4.
A series of CdSe and CdSe/CdS quantum dots (QDs) labeled with amino acid-modified β-cyclodextrin (β-CD) was prepared by a simple ultrasonic method. These amino acid-modified β-CD-coated QDs are very soluble and stable in biological buffer. They also have high colloidal stability and strong optical emission properties that are similar to those of untreated tri-n-octylphosphine oxide (TOPO)-coated QDs. The quantum yields (QYs) of these amino acid-modified β-CD-coated CdSe and CdSe/CdS QDs in biological buffer were found to be very high. In particular, the QYs of the positively charged l-His-β-CD-coated CdSe/CdS QDs were as high as 33.5±1.8%. In addition, the fluorescence lifetime of these QDs was also very long in PBS solutions as determined by frequency domain spectroscopy. For example, the lifetime of l-His-β-CD-coated CdSe/CdS QDs was 8.6 ns. The in vitro cytotoxicity of these QDs in ECV-304, SH-SY5Y and HeLa cells was found to be lower. l-His-β-CD-coated CdSe/CdS QDs were the least cytotoxic (IC50 95.6±3.2 mg mL?1 in ECV-304 cells after 48 h). The flow cytometry results show that the positively charged amino acid led to a considerable increase in biocompatibility of QDs. This may be attributed to the presence of an amino acid-modified β-CD outer layer, which enhanced the biocompatibility.  相似文献   

5.
CdCl2 treatment is crucial in the fabrication of highly efficient CdS/CdTe thin-film solar cells. This study reports a comprehensive analysis of thermal evaporated CdS/CdTe thin-film solar cells when the CdTe absorber layer is CdCl2 annealed at temperatures from 340 to 440 °C. Samples were characterized for structural, optical, morphological and electrical properties. The films annealed at 400 °C showed better crystallinity with a cubic zinc blende structure having large grains. Higher refractive index, optical conductivity, and absorption coefficient were recorded for the CdTe films annealed at 400 °C with CdCl2. Optimum photoactive properties for CdS/CdTe thin-film solar cells were also obtained when samples were annealed at 400 °C for 20 min with CdCl2, and the best device exhibited VOC of 668.4 mV, JSC of 13.6 mA cm−2, FF of 53.9% and an efficiency of 4.9%.  相似文献   

6.
The self-organized titania nanotube arrays (NTAs) fabricated by anodisation has gained enormous interest due to its high spatial orientation, excellent charge transfer structure, and large internal surface area; all are crucial properties influencing the absorption and propagation of light. In this study, a composite material, CdSe nanoparticle/TiO2 nanotube arrays (CdSe/TiO2 NTAs) were assembled through the insertion of CdSe nanoparticles onto the anodized TiO2 nanotube arrays via electrochemical deposition. The annealing temperature of CdSe/TiO2 NTAs was varied from 200 to 350 °C and was found to play an important role in controlling the formation of CdSe nanoparticles on TiO2 NTAs. Characterizations of the films were performed by using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, high resolution transmission electron microscopes, X-ray diffractometry and UV–visible diffuse reflectance spectroscopy. The transient photocurrent was examined in a three-electrode system under halogen illumination by using the prepared film as the photoanode. It was found that the CdSe nanoparticles were susceptible to spread through electrochemical deposition and formed on the nanotubes by annealing in nitrogen atmosphere. The increment in annealing temperature has resulted in greater amount of CdSe loaded onto TiO2 nanotube arrays. Therefore, a suitable annealing temperature can enhance the particle interaction, leading to considerable improvement in PEC performance. The sensitized CdSe/TiO2 NTAs annealed at 250 °C displayed 84 folds improvement in photoconversion efficiency than that of bare TiO2 NTAs counterparts.  相似文献   

7.
H. Chettah  D. Abdi  H. Amardjia  H. Haffar 《Ionics》2009,15(2):169-176
Thin TiO2 films obtained by cathodic electrosynthesis from an acidic aqueous bath containing TiOSO4, H2O2 and KNO3 on conductive glass indium tin oxide have been physically and electrochemically characterised. Secondary ion mass spectroscopy profile of the crystallised gel after heat treatment at 400 °C shows the presence of TiO2 with traces of TiO and oxygen. X-ray patterns confirm the presence of anatase nanocrystallites for the annealed film and an amorphous structure for the non-annealed gel. Scattering electron microscopy surface micrographies reveal an opened porous nanostructure of the deposits. Cyclic voltammetry and impedance spectroscopic measurements reveal the different behaviour of the films obtained before and after the annealing, showing an important electrical activity of the non-annealed films. The dependence of capacitance values with potential in the anodic domain of depletion is obviously remarked from impedance plots for both gel and crystal forms of the film, which confirmed the fact that films obtained in this way have n-type properties. The potential of flat band equals −0.6 V/Ag/AgCl in pH range of 6.5 has been estimated according to Mott–Shottky curves for the crystallised oxide; meanwhile, the Mott–Shottky curve for the hydrated gel was nonlinear.  相似文献   

8.
In this work, amorphous and crystalline TiO2 films were synthesized by the sol–gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.  相似文献   

9.
Quantum dots' sensitized solar cells (QDSSCs) can create the high-performance and low-cost photovoltaic in the future. In this study, we synthesized the film of TiO2/CdS/CdSe/ZnS photoanodes by successive ionic layer adsorption reaction (SILAR) method. The absorption spectra, photoluminescent spectra and electrochemical impedance spectra (EIS) of the film TiO2/CdS/CdSe/ZnS photoanodes show that the structure of energy levels in the conduction band (CB) of photoanode materials CdS, CdSe, and ZnS quantum dots (QDs) can absorb a great number of photons in each region and inject stimulated electrons quickly into the conduction band (CB) of TiO2. Furthermore, we also studied the influence of the SILAR cycles on the dynamic resistance, the lifetime of electrons in QDSSCs through Nyquist and Bode.  相似文献   

10.
Film characterization based on variable-angle spectroscopic ellipsometry (VASE) is desirable in order to understand physical and optical characteristics of thin films. A number of TiO2 film samples were prepared by ion-assisted electron-beam evaporation with 200-nm nominal thickness, 2.0 Å/s deposition rate and 8 sccm oxygen flow rate. The samples were maintained at 250 °C during the deposition, and annealed in air atmosphere afterwards. As-deposited and annealed films were analyzed by VASE, spectrophotoscopy and X-ray diffractometry. From ellipsometry modeling process, the triple-layer physical model and the Cody–Lorentz dispersion model offer the best results. The as-deposited films are inhomogeneous, with luminous transmittance and band gap of 62.37% and 2.95 eV. The 300 °C and 500 °C are transition temperatures toward anatase and rutile phases, respectively. Increasing temperature results in an increase of refractive index, transmittance percentage and band gap energy. At 500 °C, the highest refractive index and band gap energy are obtained at 2.62 and 3.26 eV, respectively. The developed VASE-modeling process should be able to characterize other TiO2 films, using similar physical and optical modeling considerations.  相似文献   

11.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

12.
To investigate the shell deposited kinetics, CdSe quantum dots (QDs) and nanorods (NRs) with a maximum length of 17 nm were fabricated via organic synthesis routes. CdSe with a hexagonal crystal structure (wurtzite) favors epitaxial growth on the {002} surfaces when well-controlled conditions were used. The morphologies and sizes of CdSe samples depended strongly on chemicals and temperature. In the case of 320 °C, CdSe NRs with adjusted length of 7–17 nm were obtained from trioctylphosphine oxide (TOPO) and tetradecylphosphonic acid (TDPA). In contrast, short CdSe NRs (less than 10 nm) were created from octadecylphosphonic acid (ODPA) and trioctylamine (TOA). Spherical CdSe QDs were further fabricated using stearic acid (SA) and TOPO at 300 °C. CdSe cores were coated with Cd0.5Zn0.5S and CdTe shells. Anisotropic growth occurred during shell deposition because CdS shells grown preferentially on the {001} facet of the CdSe core. In the case of CdSe core prepared from TOPO and TDPA, CdSe/Cd0.5Zn0.5S core/shell samples prepared from long CdSe NRs (more than 10 nm) revealed a peanut morphology while the core/shell samples created from short ones (less than 10 nm) exhibited a spherical morphology. All of the CdSe/Cd0.5Zn0.5S core/shell samples revealed a similar length to that of the CdSe cores. This phenomenon was also observed for the core/shell samples fabricated using CdSe NRs prepared by ODPA and TOA. This is ascribed to the well-developed crystal structure of CdSe NRs fabricated using an organic synthesis at high temperature. In contrast, this anisotropic growth did not occur when spherical CdSe QDs prepared from SA and TOPO and the shell (Cd0.5Zn0.5S) coating carried out using SA and TOA. To indicate the shell depositing process, CdSe NRs fabricated using TDPA and TOPO were coated with a CdTe shell. CdTe monomers were deposited on the middle and tip parts of the CdSe NRs to form a tetrapod-like morphology at 220 °C. This is ascribed to the large difference of structure of CdSe (hexagonal) and CdTe (zinc blende).  相似文献   

13.
Silver (Ag) contacts are important reflectors for vertical-structure GaN-based light-emitting diodes (LEDs). The Ag contacts produce good electrical and optical properties at different annealing temperatures. Thus, in order to best optimize the reliability of LEDs, we introduced an Ag activation process before performing normal annealing treatments. In other words, after removing 200-nm-thick Ag layers on p-GaN that were annealed at 500 °C for 1 min, Ag films were deposited on the Ag-activated p-GaN, which were subsequently annealed at 300 °C for 1 min. The activated LEDs fabricated with the 300 °C-annealed Ag contacts reveal better electrical properties than the reference LEDs. For example, the activated LEDs give a forward voltage of 2.92 V at an injection current of 20 mA, whereas the reference LEDs with the 300- and 500 °C-annealed Ag contacts yield 3.02 and 2.98 V at 20 mA, respectively. The activated LEDs yield 4.9% and 17% higher output power (at 30 mW) than the reference LEDs with the Ag contacts annealed at 300 and 500 °C. The activation-induced electrical improvement is briefly described and discussed.  相似文献   

14.
Titanium dioxide (TiO2) films with a thickness of 550 nm were deposited on quartz glass at 300 °C by metalorganic chemical vapor deposition. The effects of post-annealing between 600 °C and 1000 °C were investigated on the structural and optical properties of the films. X-ray diffraction patterns revealed that the anatase phase of as-grown TiO2 films began to be transformed into rutile at the annealing temperature of 900 °C. The TiO2 films were entirely changed to the rutile phase at 1000 °C. From scanning electron spectroscopy and atomic force microscopy images, it was confirmed that the microstructure of as-deposited films changed from narrow columnar grains into wide columnar ones. The surface composition of the TiO2 films, which was analyzed by X-ray photoelectron spectroscopy data, was nearly constant although the films were annealed at different temperatures. When the annealing temperature increased, the transmittance of the films decreased, whereas the refractive index and the extinction coefficient calculated by the envelope method increased at high temperature. The values of optical band gap decreased from 3.5 eV to 3.25 eV at 900 °C. This abrupt decrease was consistent with the anatase-to-rutile phase transition. Received: 4 October 2000 / Accepted: 4 December 2000 / Published online: 23 May 2001  相似文献   

15.
《Current Applied Physics》2020,20(6):751-754
Excellent dielectric frequency, bias, and temperature stability of bismuth silicate (Bi2SiO5, BSO) thin films with a low dielectric loss has been obtained in this study. The thin films were prepared on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method at a relatively low annealing temperature of 500 °C. The BSO films have a preferred growth along (200) orientation with dense fine-grained surface morphology. The dielectric constant and dielectric loss of the thin film annealed at 500 °C are 57 and 0.01, respectively, at 100 kHz, with little change between 1 kHz and 100 kHz and in the bias electric field range between −250 kV/cm and 250 kV/cm, indicating that the thin film exhibits a low dielectric loss as well as excellent frequency and bias field stability. The dielectric-temperature measurements confirmed that the BSO thin film annealed at 500 °C also has good temperature stability between 150 K and 450 K. Our results suggest that the BSO thin films have potential applications in the next-generation integrated capacitors.  相似文献   

16.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

17.
A novel technique, the pulsed-laser-induced liquid-deposition (PLLD) method, has been employed to grow nanocrystalline TiO2 films on fluorine-doped tin-oxide-coated (FTO) glass substrates at room temperature. The PLLD method was implemented by directing a pulsed laser into a liquid precursor and depositing the photosynthesized nanocrystalline TiO2 on an FTO glass substrate immersed in the liquid precursor. The as-grown nanocrystalline TiO2 films were found to have a rutile crystal structure and consist of a number of flower-like TiO2 crystal units arrayed together on the FTO glass substrate. Each of the flower-like TiO2 crystal units was composed of many nanostructured TiO2 whiskers, and their building blocks were found to be bundles of TiO2 nanorods with diameter of about 5 nm. The growth of these TiO2 nanorods is highly anisotropic, with the preferential growth direction along [001]. As-grown nanocrystalline TiO2 films were annealed at 450°C in air for 30 min for the applications of dye-sensitized solar cells, and the nanostructured characteristics with good porosity were preserved after annealing. A preliminary dye-sensitized solar cell was built based on the annealed nanocrystalline TiO2 film. The results suggest that the PLLD method is a promising technique for growing nanocrystalline TiO2 films for photovoltaic applications.  相似文献   

18.
The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.  相似文献   

19.
Nanostructured TiO2 thin films were deposited on quartz glass at room temperature by sol–gel dip coating method. The effects of annealing temperature between 200C to 1100C were investigated on the structural, morphological, and optical properties of these films. The X-ray diffraction results showed that nanostructured TiO2 thin film annealed at between 200C to 600C was amorphous transformed into the anatase phase at 700C, and further into rutile phase at 1000C. The crystallite size of TiO2 thin films was increased with increasing annealing temperature. From atomic force microscopy images it was confirmed that the microstructure of annealed thin films changed from column to nubbly. Besides, surface roughness of the thin films increases from 1.82 to 5.20 nm, and at the same time, average grain size as well grows up from about 39 to 313 nm with increase of the annealing temperature. The transmittance of the thin films annealed at 1000 and 1100C was reduced significantly in the wavelength range of about 300–700 nm due to the change of crystallite phase. Refractive index and optical high dielectric constant of the n-TiO2 thin films were increased with increasing annealing temperature, and the film thickness and the optical band gap of nanostructured TiO2 thin films were decreased.  相似文献   

20.
Bilayer CeO2/TiO2 films with high-k dielectric property were prepared by rf magnetron sputtering technique at room temperature. Effect of annealing treatment on resistive switching (RS) properties of bilayer CeO2/TiO2 films in O2 ambient at different temperature in the range of 350–550 °C was investigated. Our results revealed that the bilayer films had good interfacial property at 500 °C and this annealing temperature is optimum for different RS characteristics. Results showed that bilayer CeO2/TiO2 film perform better uniformity and reliability in resistive switching at intermediate temperature (i.e. 450 °C and 500 °C) instead of low and high annealing temperature (i.e. 350 °C and 550 °C) at which it exhibits poor crystalline structure with more amorphous background. Less Gibbs free energy of TiO2 as compared to CeO2 results in an easier re-oxidation of the filament through the oxygen exchange with TaN electrode. However, the excellent endurance property (>2500 cycles), data retentions (105 s) and good cycle-to-cycle uniformity is observed only in 500 °C annealed devices. The plots of cumulative probability, essential memory parameter, show a good distribution of Set/Reset voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号