首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Current Applied Physics》2010,10(6):1383-1386
Pure and Er3+ doped SnO2 semiconductor nanoparticles have been synthesized by solgel technique. The X-ray diffraction patterns show peaks corresponding to tetragonal structure of SnO2. No Er related impurity peaks could be observed. From the TEM micrographs average crystallite size was estimated to be 12 nm. The UV–visible absorption spectra of SnO2:Er showed blue shift in the absorption shoulder compared with the spectra of undoped SnO2 sample. Photoluminescence emission intensity of SnO2:Er nanoparticles was found to be quenched with increasing concentration of Er3+ ions. The electron spin resonance (ESR) analysis of Er doped SnO2 nanoparticles indicated Er in 3 + state with g = 2.  相似文献   

2.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

3.
Nickel-doped tin oxide nanoparticles (sub-5 nm size) with intense fluorescence emission behavior have been synthesized by sol-gel route. The structural and compositional analysis has been carried out by using XRD, TEM, FESEM and EDAX. The optical absorbance spectra indicate a band gap narrowing effect and it was found to increase with the increase in nickel concentration. The band gap narrowing at low dopant concentration (<5%) can be assigned to SnO2−SnO2−x alloying effect and for higher doping it may be due to the formation of defect sub-bands below the conduction band.  相似文献   

4.
《Current Applied Physics》2010,10(2):636-641
In this paper, a very simple procedure was presented for the reproducible synthesis of large-area SnO2 nanowires (NWs) on a silicon substrate by evaporating Sn powders at temperatures of 700, 750, and 800 °C. As-obtained SnO2 NWs were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. They revealed that the morphology of the NWs is affected by growth temperature and the SnO2 NWs are single-crystalline tetragonal. The band gap of the NWs is in the range of 4.2–4.3 eV as determined from UV/visible absorption. The NWs show stable photoluminescence with an emission peak centered at around 620 nm at room-temperature. The sensors fabricated from the SnO2 NWs synthesized at 700 °C exhibited good response to LPG (liquefied petroleum gas) at an operating temperature of 400 °C.  相似文献   

5.
AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293–333 K) and frequency range (50–5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=s. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.  相似文献   

6.
Hierarchical structured Co-doped SnO2 nanoparticles are prepared by a low temperature hydrothermal process. The structural and surface morphologies of the SnO2 and Sn1?xCoxO2 nanoparticles are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The Sn1?xCoxO2 nanoparticles form with a tetragonal rutile structure during the hydrothermal process without further calcination. The pseudocapacitance behavior of the Sn1?xCoxO2 nanoparticles is characterized by cyclic voltammetry (CV) in 1.0 M H2SO4 electrolyte. The specific capacitance (SC) is found to increase with an increase in cobalt content. A maximum SC of 840 F g?1 is obtained for a Sn0.96Co0.04O2 composite at a 10 mV s?1 scan rate.  相似文献   

7.
B Singh  P S Tarsikka  L Singh 《Pramana》2002,59(4):653-661
Studies of dielectric relaxation and ac conductivity have been made on three samples of sodium tungsten phosphate glasses over a temperature range of 77–420 K. Complex relative permitivity data have been analyzed using dielectric modulus approach. Conductivity relaxation frequency increases with the increase of temperature. Activation energy for conductivity relaxation has also been evaluated. Measured ac conductivity (σm(ω)) has been found to be higher than σdc at low temperatures whereas at high temperature σm(ω) becomes equal to σdc at all frequencies. The ac conductivity obeys the relation σac(ω)=Aω S over a considerable range of low temperatures. Values of exponent S are nearly equal to unity at about 78 K and the values decrease non-linearly with the increase of temperature. Values of the number density of states at Fermi level (N(E F)) have been evaluated at 80 K assuming values of electron wave function decay constant α to be 0.5 (Å)?1. Values of N(E F) have the order 1020 which are well within the range suggested for localized states. Present values of N(E F) are smaller than those for tungsten phosphate glasses.  相似文献   

8.
ZnS nanoparticles with Co2+ doping have been prepared at room temperature through a soft chemical route, namely the chemical co-precipitation method. The nanostructures of the prepared nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected-area electron diffraction (SAED), and UV-vis spectrophotometer. The sizes of as prepared nanoparticles are found to be in 1–4 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample exhibits emission in the blue region with multiple peaks under UV excitation. On the other hand, in the Co2+ doped ZnS samples enhanced visible light emissions with emission intensities of ~35 times larger than that of the undoped sample are observed under the same UV excitation wavelength of 280 nm.  相似文献   

9.
Diluted magnetic semiconductor (DMS) nanoparticles of Sn1−x Er x O2 (x = 0.0, 0.02, 0.04, and 0.1) were prepared by sol–gel method. The X-ray diffraction patterns showed SnO2 rutile structure for all samples with no impurity peaks. The decrease in crystallite size with Er concentration was confirmed from TEM measurements (from 12 to 4 nm). The UV–Visible absorption spectra of Er-doped SnO2 nanoparticles showed blue shift in band gap compared to undoped SnO2. The electron spin resonance analysis of Er-doped SnO2 nanoparticles indicate Er3+ in a rutile lattice and also decrease in intensity with Er concentration above x = 0.02. Temperature-dependent magnetization studies and the inverse susceptibility curves indicated increased antiferromagnetic interaction with Er concentration.  相似文献   

10.
Zn-doped nickel ferrite nanoparticles (Zn0.6Ni0.4Fe2O4) have been prepared via a surfactant, polyethylene glycol assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and vibrating scanning magnetometry (VSM) were used for the structural, morphological, and magnetic characterizations of the product, respectively. TEM analysis revealed that the nanoparticles have a narrow size distribution, with average particle size of 15±1 nm, which agrees well with the XRD based estimate of 14±2 nm. The absence of saturation and remanent magnetization, and coercivity in the high temperature region of the M-H curve and non-zero magnetic moments indicate superparamagnetism of the nanoparticles with a canted spin structure. The appearance of a peak on the temperature-dependent zero-field cooling magnetization curve at ∼190 K indicates the blocking temperature of the sample.  相似文献   

11.
We have successfully synthesized Co doped SnO2 nanoparticles by a simple microwave irradiation technique. Powder X-ray diffraction results reveal that the SnO2 doped with cobalt concentration from 0 to 5 wt % crystallizes in tetragonal rutile-type structure. The products were annealed at 600 °C for 5 h in ambient atmosphere in order to improve crystallinity and structural perfection. Transmission electron microscopy (TEM) studies illustrate that both the undoped and Co doped SnO2 crystallites form in spherical shapes with an average diameter of 30–15 nm, which is in good agreement with the average crystallite sizes calculated by Scherrer's formula. A considerable red shift in the absorbing band edge was observed with increasing of Co content (0–5 wt %) by using UV–Vis diffuse reflectance spectroscopy (DRS). Oxygen-vacancies, tin interstitial and structural defects were analyzed using photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopic studies clearly showed that the Co2+ was incorporated into the SnO2 host lattice. Ethanol gas sensitivity of pure and Co-doped (5 wt %) SnO2 nanoparticles were experimented at ambient temperature using optical fiber based on clad-modified method. By modifying the clad exposure to ethanol vapor, the sensitivities were estimated to be 18 and 30 counts/100 ppm for undoped and Co-doped SnO2 nanoparticles, respectively. These results show that the Co doping into SnO2 enhances its ethanol gas sensitivity significantly.  相似文献   

12.
Undoped and Zn-doped TiO2 nanoparticles were synthesized by the sol gel method. The dopant (Zn) was taken at 0.1, 0.2, 0.5, 0.7, and 1.0 mol%. The initial precursors were titanium tetraisopropoxide and zinc acetate. The samples were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance. The photocatalytic activity of the prepared nanoparticles was studied by observing their role in degradation of two azo dyes, i.e., Eriochrome Black T and Methyl Red under UV–visible light. The results revealed that Zn-doped TiO2 nanoparticles exhibited better degradation as compared to undoped TiO2 nanoparticles. In this study, 0.7 mol% Zn-doped TiO2 showed highest photocatalytic activity. Doping of Zn allowed better separation of electron–hole pairs which results in increased oxidation and reduction reactions.  相似文献   

13.
An organic dispersion of 9–15 nm size stable dysprosium oxide incorporated zinc oxide nanocomposites exhibiting luminescence in the visible region has been synthesised by a wet chemical precipitation technique at room temperature. Tetraethoxysilane TEOS [(C2H5O)4Si], (3-aminopropyl) trimethoxysilane (APTS) and a 1:1 mixture of TEOS–APTS have been used as capping agents to control the particle size as well as to achieve uniform dispersion of composite nanoparticles in methanol medium. X-ray diffractometer (XRD) analysis reveals the formation phase of amino-functionalised colloidal dysprosium oxide incorporated ZnO composite nanoparticles to be of zincite structure. The Transmission Electron Microscopy (TEM) images show that the particles are spheroids in shape, having average crystalline sizes ranging from 9 to 15 nm. The photoluminescence (PL) observed in these composites has been attributed to the presence of near band edge excitonic emission and existence of defect centres. The time correlated single photon counting studies of the composite nanoparticles exhibited three decay pathways. The enhanced PL emission intensity of solid state fluorescence spectra of samples is attributed to the absence of vibrational relaxation process.  相似文献   

14.
In modern approaches for nanomaterials synthesis, ultrasonication plays an important role in providing the larger surface area and smaller crystalline size properties that are favorable to electrochemical techniques. Herein, we report the tin (IV) oxide on graphene oxide nanoparticles were synthesized (SnO2@GO NPs) by ultrasonic methodology (UZ SONOPULS HD 3400 Ultrasonic homogenizer) with the total power of 400 W and the (frequency of 20 kHz; 140 W/dm3). The formation of as-prepared SnO2@GO NPs and its surface morphology were scrutinized over XRD, XPS, TEM, and FESEM. Besides, the sonochemically prepared SnO2@GO NPs were employed for the determination of environmental hazardous mercury (Hg). As a result, the modified electrode acquired a very low-level detection limit of 1.2 nM with a wider range of 0.01–10.41-µM and 14.52–225.4-µM for the detection of Hg. Finally, the practical applicability of SnO2@GO NPs in spiked human blood serum and tuna fish samples shows appreciable found and recovery values..  相似文献   

15.
《Current Applied Physics》2014,14(3):322-330
Au/PVC + TCNQ/p-Si structure was fabricated and real and imaginary parts of the dielectric constant (ɛ′, ɛ″), loss tangent (tanδ), and the real and imaginary parts of the electric modulus (M′, M″) and ac conductivity (σac) of this structure have been investigated in wide frequency a range of 1 kHz–5 MHz at room temperature. All of these parameters were found strong function of frequency and voltage especially in the inversion and depletion regions at low frequencies due to interfacial polarization and charges at interface states (Nss). The decrease in ɛ′ and ɛ″ with increasing frequency indicated that the interfacial dipoles have less time to orient themselves in the direction of the alternate field. While the value of M′ increase with increasing frequency and reach a maximum, M″ shows a peak and the peak position shifts to higher frequency with increasing applied voltage. The ln(σac) vs ln(ω) plot of the structure for 0.5 V has three linear regions (I, II and III) with different slopes which correspond to low, intermediate and high frequency ranges, respectively. Such behavior of ln(σac) vs ln(ω) plot indicated that there are three different conduction mechanisms in the Au/PVC + TCNQ/p-Si structure at room temperature.  相似文献   

16.
An unusual structural phase transition in the crystalline compound Rb2HfF6 near room temperature has been observed from perturbed angular correlation (PAC) spectroscopy. Our measurements in this compound produce two different crystalline configurations characterized by ωQ=74.1(1) Mrad/s, η~0, δ~0 and ωQ=24.7(2) Mrad/s, η=0.53(1), and δ=4(2)%. From PAC measurements in different samples, it is found that crystal structure corresponding to ωQ=74 Mrad/s, η~0 transforms to the other quite arbitrarily with temperature and no definite temperature corresponding to this transition has been observed. This can possibly be attributed to displacive phase transition.  相似文献   

17.
Zn1 − xFexS (x=0.0, 0.1, 0.2, 0.4 and 0.6) nanocrystals have been obtained by chemical co-precipitation from homogeneous solutions of zinc and iron salt compounds, with S2− as precipitating anion formed by decomposition of thiophenol. The TEM micrographs show a spherical shape for ZnS nanocrystals and their average size is around 7 nm. The optical absorption spectra indicate a blue shift of the absorption edge with increasing Fe-content. The luminescence of nanoparticles excite at about 370 nm with an emission peak at around 490 nm. At room temperature, ESR signal characteristic of Fe3+ was observed in samples of all concentrations.  相似文献   

18.
Rutile phase of SnO2 quantum dots of average size of 2.5 nm were synthesized at a growth temperature of 70 °C and characterized with XRD, TEM, FTIR and Raman analysis. The effective strain within the lattice of SnO2 quantum dots was calculated by Williamson–Hall method. The broad peaks in XRD as well as Raman spectra and the presence of Raman bands at 569 and 432 cm−1 are due to lower crystallinity of nanoparticles. The optical band gap of SnO2 quantum dots was increased to 3.75 eV attributed to the quantum size effect. SnO2 quantum dots were annealed in air atmosphere and the crystallite size of the particles increased with annealing temperature. Sunlight assisted photodegration property of SnO2 quantum dots was investigated with vanillin as a model system and it shows the photodegradation efficiency of 87%. The photoluminescence and photodegradation efficiency of nanocrystallite SnO2 decreases with increase of crystallite size contributed to the reduction in population of defects and surface area.  相似文献   

19.
《Solid State Ionics》2006,177(17-18):1429-1436
Lithium ion transport process and glass network modification upon the variation of network modifier (M) to former (F) ratio (M/F) in 30% LiBO2–70% [(M Li2O–F P2O5)] glasses have been investigated. The glasses with different M/F ratios (0.42–1.0) were prepared by melt quenching technique and characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman and impedance spectroscopy techniques. The glass transition temperature, Tg increased with increasing M/F ratio suggesting an increase in overall connectivity of the network structure. Dc conductivity showed an enhancement of three orders of magnitude with increasing M/F. The observed increase in Tg and dc conductivity with modifier concentration has been explained on the basis of the competition between network breaking/forming events, leading to an increase in overall connectivity of the network and the formation of continuous channels for ion migration. Ac conductivity data were analyzed by fitting the data to Almond-West type power law equation, σ′(ω) = σ(0) + n. The power law exponent, n, was found to be temperature dependent and exhibited a minimum, nmin. The observation of nmin has been explained in the light of diffusion controlled relaxation (DCR) model. Furthermore, the scaling of both ac conductivity and electrical modulus data showed an excellent collapse on to a single master curve indicating that there is a good time–temperature superposition and that conduction mechanism remains unchanged in this glass system.  相似文献   

20.
Co doped SnO2 nanoparticles have been prepared via a wet chemical method with different precipitation processes. The structure and morphology of Co doped SnO2 nanoparticles demonstrate that the nanoparticles are in a rutile single phase and uniform, respectively. X-ray photoelectron spectroscopy shows that the Co dopants are in 2+ oxidation valence state and doped ∼2 atm% in SnO2 nanoparticles. Moreover, Raman spectroscopy further confirms that Co doped SnO2 nanoparticles have single phase crystallinity without forming any extra modes related to secondary phases. The magnetic measurements reveal that all nanoparticles exhibit room temperature ferromagnetism (RTFM) due to the presence of disorders and defects introduced by hydroxyls in the crystal structure. In addition, it has been clearly observed that the saturated magnetic moments are strongly affected by the precipitation processes which control the incorporation of hydroxyls into the lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号