首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Discrete Optimization》2008,5(4):755-761
In this paper, we study the sensitivity of the optimum of the binary knapsack problem to perturbations of the profit of a subset of items. In order to stabilize the optimal solution, two cases are distinguished. The first case represents a subset of items whose perturbation can be done individually. The second case represents a subset of items where perturbing the profit of each item requires the perturbation of the profit of the other items. We will study the impact of the results obtained on an instance of the binary knapsack problem while considering the various cases.  相似文献   

2.
We study a constrained version of the knapsack problem in which dependencies between items are given by the adjacencies of a graph. In the 1-neighbour knapsack problem, an item can be selected only if at least one of its neighbours is also selected. In the all-neighbours knapsack problem, an item can be selected only if all its neighbours are also selected.We give approximation algorithms and hardness results when the vertices have both uniform and arbitrary weight and profit functions, and when the dependency graph is directed and undirected.  相似文献   

3.
An unbounded knapsack problem (KP) was investigated that describes the loading of items into a knapsack with a finite capacity, W, so as to maximize the total value of the loaded items. There were n types of an infinite number of items, each type with a distinct weight and value. Exact branch and bound algorithms have been successfully applied previously to the unbounded KP, even when n and W were very large; however, the algorithms are not adequate when the weight and the value of the items are strongly correlated. An improved branching strategy is proposed that is less sensitive to such a correlation; it can therefore be used for both strongly correlated and uncorrelated problems.  相似文献   

4.
We propose a generalization of the inverse problem which we will call the adjustment problem. For an optimization problem with linear objective function and its restriction defined by a given subset of feasible solutions, the adjustment problem consists in finding the least costly perturbations of the original objective function coefficients, which guarantee that an optimal solution of the perturbed problem is also feasible for the considered restriction. We describe a method of solving the adjustment problem for continuous linear programming problems when variables in the restriction are required to be binary.  相似文献   

5.
The knapsack problem (KP) is generalized to the case where items are partially ordered through a set of precedence relations. As in ordinary KPs, each item is associated with profit and weight, the knapsack has a fixed capacity, and the problem is to determine the set of items to be packed in the knapsack. However, each item can be accepted only when all the preceding items have been included in the knapsack. The knapsack problem with these additional constraints is referred to as the precedence-constrained knapsack problem (PCKP). To solve PCKP exactly, we present a pegging approach, where the size of the original problem is reduced by applying the Lagrangian relaxation followed by a pegging test. Through this approach, we are able to solve PCKPs with thousands of items within a few minutes on an ordinary workstation.  相似文献   

6.
The knapsack problem (KP) is generalized taking into account a precedence relation between items. Such a relation can be represented by means of a directed acyclic graph, where nodes correspond to items in a one-to-one way. As in ordinary KPs, each item is associated with profit and weight, the knapsack has a fixed capacity, and the problem is to determine the set of items to be included in the knapsack. However, each item can be adopted only when all of its predecessors have been included in the knapsack. The knapsack problem with such an additional set of constraints is referred to as the precedence-constrained knapsack problem (PCKP). We present some dynamic programming algorithms that can solve small PCKPs to optimality, as well as a preprocessing method to reduce the size of the problem. Combining these, we are able to solve PCKPs with up to 2000 items in less than a few minutes of CPU time.  相似文献   

7.
The Knapsack Sharing Problem (KSP) is an NP-Hard combinatorial optimization problem, admitted in numerous real world applications. In the KSP, we have a knapsack of capacity c and a set of n objects, namely N, where each object j, j = 1,...,n, is associated with a profit p j and a weight w j. The set of objects N is composed of m different classes of objects J i, i = 1,...,m, and N = m i=1 J i. The aim is to determine a subset of objects to be included in the knapsack that realizes a max-min value over all classes.In this article, we solve the KSP using an approximate solution method based upon tabu search. First, we describe a simple local search in which a depthparameter and a tabu list are used. Next, we enhance the algorithm by introducing some intensifying and diversifying strategies. The two versions of the algorithm yield satisfactory results within reasonable computational time. Extensive computational testing on problem instances taken from the literature shows the effectiveness of the proposed approach.  相似文献   

8.
We are concerned with a variation of the knapsack problem as well as of the knapsack sharing problem, where we are given a set of n items and a knapsack of a fixed capacity. As usual, each item is associated with its profit and weight, and the problem is to determine the subset of items to be packed into the knapsack. However, in the problem there are s players and the items are divided into s + 1 disjoint groups, Nk (k = 0, 1,  , s). The player k is concerned only with the items in N0  Nk, where N0 is the set of ‘common’ items, while Nk represents the set of his own items. The problem is to maximize the minimum of the profits of all the players. An algorithm is developed to solve this problem to optimality, and through a series of computational experiments, we evaluate the performance of the developed algorithm.  相似文献   

9.
The discounted {0-1} knapsack problem (DKP) is an extension of the classical {0-1} knapsack problem (KP) that consists of selecting a set of item groups where each group includes three items and at most one of the three items can be selected. The DKP is more challenging than the KP because four choices of items in an item group diversify the selection of the items. Consequently, it is not possible to solve the DKP based on a classical definition of a core consisting of a small number of relevant variables. This paper partitions the DKP into several easier sub-problems to achieve problem reductions by imitating the core concept of the KP to derive an alternative core for the DKP. Numerical experiments with DP-based algorithms are conducted to evaluate the effectiveness of the problem partition by solving the partitioned problem and the original problem based on different types of DKP instances.  相似文献   

10.
In this paper, we propose a reactive local search-based algorithm for the disjunctively constrained knapsack problem (DCKP). DCKP is a variant of the standard knapsack problem, an NP-hard combinatorial optimization problem, with special disjunctive constraints. A disjunctive constraint is a couple of items for which only one item is packed. The proposed algorithm is based upon a reactive local search, where an explicit check for the repetition of configurations is added to the search process. Initially, two complementary greedy procedures are applied in order to construct a starting solution. Second, a degrading procedure is introduced in order (i) to escape to local optima and (ii) to introduce a diversification in the search space. Finally, a memory list is added in order to forbid the repetition of configurations. The performance of two versions of the algorithm has been evaluated on several problem instances and compared to the results obtained by running the Cplex solver. Encouraging results have been obtained.  相似文献   

11.
We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Such structure arises in a wide variety of important problems, e.g. blending and portfolio selection. We show how strong inequalities valid for the semi-continuous knapsack polyhedron can be derived and used in a branch-and-cut scheme for problems with semi-continuous variables. To demonstrate the effectiveness of these inequalities, which we call collectively semi-continuous cuts, we present computational results on real instances of the unit commitment problem, as well as on a number of randomly generated instances of linear programming with semi-continuous variables.  相似文献   

12.
We introduce a variant of the knapsack problem, in which the weights of items are also variables but must satisfy a system of linear constraints, and the capacity of knapsack is given and known. We discuss two models: (1) the value of each item is given; (2) the value-to-weight ratio of each item is given. The goal is to determine the weight of each item, and to find a subset of items such that the total weight is no more than the capacity and the total value is maximized. We provide several practical application scenarios that motivate our study, and then investigate the computational complexity and corresponding algorithms. In particular, we show that if the number of constraints is a fixed constant, then both problems can be solved in polynomial time. If the number of constraints is an input, then we show that the first problem is NP-Hard and cannot be approximated within any constant factor unless \(\mathrm{P}= \mathrm{NP}\), while the second problem is NP-Hard but admits a polynomial time approximation scheme. We further propose approximation algorithms for both problems, and extend the results to multiple knapsack cases with a fixed number of knapsacks and identical capacities.  相似文献   

13.
The sensitivity function of a control system is an important concept in performance analysis, classical filter design as well as modern robust H control. For an interval system, we prove that the maximal H norm of its sensitivity function is achieved at twelve (out of sixteen) Kharitonov vertices. Similar Kharitonov-like results are established for the complementary sensitivity function and strict positive realness of interval systems. These results are useful in robust performance analysis and H control design for dynamic systems under parametric perturbations.  相似文献   

14.
We consider the problem of computing verified real interval perturbations of the coefficients of two univariate polynomials such that there exist corresponding perturbed polynomials which have an exact greatest common divisor (GCD) of a given degree k. Based on the certification of the rank deficiency of a submatrix of the Bezout matrix of two univariate polynomials, we propose an algorithm to compute verified real perturbations. Numerical experiments show the performance of our algorithm.  相似文献   

15.
The Multi-Handler Knapsack Problem under Uncertainty is a new stochastic knapsack problem where, given a set of items, characterized by volume and random profit, and a set of potential handlers, we want to find a subset of items which maximizes the expected total profit. The item profit is given by the sum of a deterministic profit plus a stochastic profit due to the random handling costs of the handlers. On the contrary of other stochastic problems in the literature, the probability distribution of the stochastic profit is unknown. By using the asymptotic theory of extreme values, a deterministic approximation for the stochastic problem is derived. The accuracy of such a deterministic approximation is tested against the two-stage with fixed recourse formulation of the problem. Very promising results are obtained on a large set of instances in negligible computing time.  相似文献   

16.
In this paper we study a particular version of the stochastic knapsack problem with normally distributed weights: the two-stage stochastic knapsack problem. Contrary to the single-stage knapsack problem, items can be added to or removed from the knapsack at the moment the actual weights become known (second stage). In addition, a chance-constraint is introduced in the first stage in order to restrict the percentage of cases where the items chosen lead to an overload in the second stage. To the best of our knowledge, there is no method known to exactly evaluate the objective function for a given first-stage solution. Therefore, we propose methods to calculate the upper and lower bounds. These bounds are used in a branch-and-bound framework in order to search the first-stage solution space. Special interest is given to the case where the items have similar weight means. Numerical results are presented and analyzed.  相似文献   

17.
In this paper, we study topological dynamics of high-dimensional systems which are perturbed from a continuous map on Rm×Rk of the form (f(x),g(x,y)). Assume that f has covering relations determined by a transition matrix A. If g is locally trapping, we show that any small C0 perturbed system has a compact positively invariant set restricted to which the system is topologically semi-conjugate to the one-sided subshift of finite type induced by A. In addition, if the covering relations satisfy a strong Liapunov condition and g is a contraction, we show that any small C1 perturbed homeomorphism has a compact invariant set restricted to which the system is topologically conjugate to the two-sided subshift of finite type induced by A. Some other results about multidimensional perturbations of f are also obtained. The strong Liapunov condition for covering relations is adapted with modification from the cone condition in Zgliczyński (2009) [11]. Our results extend those in Juang et al. (2008) [1], Li et al. (2008) [2], Li and Malkin (2006) [3], Misiurewicz and Zgliczyński (2001) [4] by considering a larger class of maps f and their multidimensional perturbations, and by concluding conjugacy rather than entropy. Our results are applicable to both the logistic and Hénon families.  相似文献   

18.
Several authors have used interval arithmetic to deal with parametric or sensitivity analysis in mathematical programming problems. Several reported computational experiments have shown how interval arithmetic can provide such results. However, there has not been a characterization of the resulting solution interval in terms of the usual sensitivity analysis results. This paper presents a characterization of perturbed convex programs and the resulting solution intervals.Interval arithmetic was developed as a mechanism for dealing with the inherent error associated with numerical computations using a computational device. Here it is used to describe error in the parameters. We show that, for convex programs, the resulting solution intervals can be characterized in terms of the usual sensitivity analysis results. It has been often reported in the literature that even well behaved convex problems can exhibit pathological behavior in the presence of data perturbations. This paper uses interval arithmetic to deal with such problems, and to characterize the behavior of the perturbed problem in the resulting interval. These results form the foundation for future computational studies using interval arithmetic to do nonlinear parametric analysis.  相似文献   

19.
We consider two-dimensional rectangular strip packing without rotation of items and without the guillotine cutting constraint. We propose two iterative heuristics. The first one, SVC(SubKP), is based on a single-pass heuristic SubKP which fills every most bottom-left free space in a one-dimensional knapsack fashion, that is, considering only item widths. It appears especially important to assign suitable ‘pseudo-profits’ in this knapsack problem. The second heuristic BS(BLR) is based on the known randomized framework Bubble-Search. It generates different item sequences and runs a new sequence-based heuristic Bottom-Left-Right (BLR), a simple modification of the Bottom-Left heuristic. We investigate the solution sets of SubKP and BLR and their relation to each other. In the tests, SVC(SubKP) improves the results for larger instances of the waste-free classes of Hopper and Turton and, on average, for the tested non-waste-free classes, compared to the latest literature. BS(BLR) gives the best results in some classes with smaller number of items (20,40).  相似文献   

20.
In this paper, we carry out parametric analysis as well as a tolerance limit based sensitivity analysis of a greedy heuristic for two knapsack problems—the 0–1 knapsack problem and the subset sum problem. We carry out the parametric analysis based on all problem parameters. In the tolerance limit based approach, we use a definition of the sensitivity analysis problem that is polynomial for polynomial heuristics. One of the interesting and counterintuitive results described in this paper is that the tolerance limits obtained from the heuristic sensitivity analysis cannot be used as bounds for the tolerance limits of the sensitivity analysis of optimal solutions in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号