首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以天然木棉为模板,利用造孔及纳米颗粒自组装两步法合成了分级多孔的Cafe2O4/C复合催化剂. Cafe2O4/C复合催化剂保留了木棉模板的中空纤维形貌,且该中空纤维是由碳及均匀分布在碳表面的Cafe2O4纳米颗粒组成. 该复合催化剂具有较强的甲基紫微波催化降解活性. 研究了Cafe2O4负载量、微波功率、催化剂用量、甲基紫的初始浓度和pH值对微波诱导甲基紫降解的影响. 结果表明,Cafe2O4/C微波降解甲基紫的催化反应具有较高的反应速率和较短的反应时间. 其降解反应符合一级动力学模型. Cafe2O4/C 高的催化活性得益于催化反应和吸附特性之间的协同作用.  相似文献   

2.
LiSn2P3O12 with sodium (Na) super ionic conductor (NASICON)-type rhombohedral structure was successfully obtained at low sintering temperature, 600 °C via citric acid-assisted sol-gel method. However, when the sintering temperature increased to 650 °C, triclinic structure coexisted with the rhombohedral structure as confirmed by X-ray diffraction analysis. Conductivity–temperature dependence of all samples were studied using impedance spectroscopy in the temperature range 30 to 500 °C, and bulk, grain boundary and total conductivity increased as the temperature increased. The highest bulk conductivity found was 3.64?×?10?5 S/cm at 500 °C for LiSn2P3O12 sample sintered at 650 °C, and the lowest bulk activation energy at low temperature was 0.008 eV, showing that sintering temperature affect the conductivity value. The voltage stability window for LiSn2P3O12 sample sintered at 600 °C at ambient temperature was up to 4.4 V. These results indicated the suitability of the LiSn2P3O12 to be exploiting further for potential applications as solid electrolytes in electrochemical devices.  相似文献   

3.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

4.
Magnetite nanoparticles of 10 nm average size were synthesized by ultrasonic waves from the chemical reaction and precipitation of ferrous and ferric iron chloride (FeCl3 · 6H2O y FeCl2 · 4H2O) in a basic medium. The formation and the incorporation of the magnetite in PMMA were followed by XRD and Mössbauer Spectroscopy. These magnetite nanoparticles were subsequently incorporated into the polymer by ultrasonic waves in order to obtain the final sample of 5 % weight Fe3O4 into the polymethylmethacrylate (PMMA). Both samples Fe3O4 nanoparticles and 5 % Fe3O4/PMMA nanocomposite, were studied by Mössbauer spectroscopy in the temperature range of 300 K–77 K. In the case of room temperature, the Mössbauer spectrum of the Fe3O4 nanoparticles sample was fitted with two magnetic histograms, one corresponding to the tetrahedral sites (Fe3?+?) and the other to the octahedral sites (Fe3?+? and Fe2?+?), while the 5 % Fe3O4/PMMA sample was fitted with two histograms as before and a singlet subspectrum related to a superparamagnetic behavior, caused by the dispersion of the nanoparticles into the polymer. The 77 K Mössabuer spectra for both samples were fitted with five magnetic subspectra similar to the bulk magnetite and for the 5 % Fe3O4/PMMA sample it was needed to add also a superparamagnetic singlet. Additionally, a study of the Verwey transition has been done and it was observed a different behavior compared with that of bulk magnetite.  相似文献   

5.
A polycrystalline sample of KCa2Nb5O15 with tungsten bronze structure was prepared by a mixed oxide method at high temperature. A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound shows a uniform grain distribution throughout the surface of the sample. Studies of temperature variation on dielectric response at various frequencies show that the compound has a transition temperature well above the room temperature (i.e., 105°C), which was confirmed by the polarization measurement. Electrical properties of the material have been studied using a complex impedance spectroscopy (CIS) technique in a wide temperature (31–500°C) and frequency (102–106 Hz) range that showed only bulk contribution and non-Debye type relaxation processes in the material. The activation energy of the compound (calculated from both the loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers. A possible ‘hopping’ mechanism for electrical transport processes in the system is evident from the modulus analysis. A plot of dc conductivity (bulk) with temperature variation demonstrates that the compound exhibits Arrhenius type of electrical conductivity.   相似文献   

6.
《Current Applied Physics》2009,9(5):1009-1013
We present here a comparative study on structural and magnetic properties of bulk and thin films of Mg0.95Mn0.05Fe2O4 ferrite deposited on two different substrates using X-ray diffraction (XRD) and dc magnetization measurements. XRD pattern indicates that the bulk sample and their thin films exhibit a polycrystalline single phase cubic spinel structure. It is found that the film deposited on indium tin oxide coated glass (ITO) substrate has smaller grain size than the film deposited on platinum coated silicon (Pt–Si) substrate. Study of magnetization hysteresis loop measurements infer that the bulk sample of Mg0.95Mn0.05Fe2O4 and its thin film deposited on Pt–Si substrate shows a well-defined hysteresis loop at room temperature, which reflects its ferrimagnetic behavior. However, the film deposited on ITO does not show any hysteresis, which reflects its superparamagnetic behavior at room temperature.  相似文献   

7.
Magnetic fine particles of cobalt ferrite (CoFe2O4) have been synthesized using complexometric method in which ethylene diamine tetra acetic acid C10H16N2O8 (EDTA) acts as a complexing agent. The crystallographic structure, microstructure and magnetic properties of the synthesized powder were characterized by using X-ray diffraction (XRD), particle size analysis and vibrating sample magnetometry (VSM). The material crystallized in cubic spinel structure with lattice parameter of about 8.38 Å. Depending on the calcining temperature, the particle size of the powders varies in the range of hundreds of nanometers to tens of micrometers. A desired relative density above 95% of the theoretical value is obtained for the bulk sample after sintering. The calcined powders and sintered sample exhibit saturation magnetizations around 80 Am2/kg which is expected for inverse CoFe2O4. With increasing calcining temperature the coercivity of these samples decreases. This simple synthesis route leads to a reproducible and stoichiometric material.  相似文献   

8.
Magnetic properties have been investigated on Mn doped TiO2(Ti0.98Mn0.02O2) bulk samples prepared by solid state reaction, which were sintered at different temperature ranging from 450 °C to 900 °C in air and argon atmosphere, respectively. The results show that the magnetic properties were strongly dependent on the sintering temperature and atmosphere. For samples sintered in air, the magnetization initially increase with the increase of sintering temperature up to 600 °C and thereafter it decrease. While the magnetization of samples sintered in argon atmosphere decreases monotonically with the increase of sintering temperature. Furthermore, for samples sintered at 600 °C in air, the magnetic susceptibility exhibits a dominant Curie-Weiss behaviour and no magnetic transition is observed over the temperature range from 10 to 300 K. In contrast, for samples sintered in argon atmosphere, besides the magnetic transition near 45 K perhaps caused by Mn3O4, another magnetic transition appears near room temperature.  相似文献   

9.
张德明  庄重  王先平  方前锋 《物理学报》2013,62(7):76601-076601
采用溶胶凝胶法合成的La1.9Y0.1Mo2O9纳米晶粉体, 结合微波烧结技术制备出不同晶粒度的La1.9Y0.1Mo2O9块体样品. 利用X射线衍射仪(XRD)、高分辨透射显微镜(HRTEM)、场扫描显微镜(SEM)对粉体及陶瓷块体的物相、 形貌进行了表征, 利用交流阻抗谱仪测试了样品不同温度下的电导率. 实验结果表明, 掺Y的La1.9Y0.1Mo2O9能将高温立方β 相稳定到室温; 块体样品致密均匀, 平均晶粒度范围在60 nm–4 μm之间; 致密度高的样品表现出高的电导率, 其中900 ℃烧结样品的电导率600 ℃时高达0.026 S/cm, 比固相反应法制备的La1.9Y0.1Mo2O9样品高出约1倍. 总结认为样品的致密性对电导率影响较大, 是通过影响晶界电导率来影响总电导率的, 样品的晶粒度(在60 nm–4 μm范围内)对电导率的影响还不能确定. 关键词: 氧离子导体 1.9Y0.1Mo2O9')" href="#">La1.9Y0.1Mo2O9 细晶粒陶瓷 微波烧结  相似文献   

10.
在室温下测量了Li2B4O7单晶的各种振动类的偏振Raman散射谱和该晶体粉末样品的红外吸收谱(200—4000cm-1)。根据LO-TO劈裂的实验结果,计算出该晶体极化模的有效电荷和振子强度。通过与BBO和LBO晶体的结构和B—O伸缩振动模频率比较,得出:Li2B4O7晶体可能有较大的非线性光学系数。 关键词:  相似文献   

11.
Fe doped ZnO powder samples (Fe/Zn=0.05 and 0.1) were prepared by sol-gel method with H2 deoxidation at 450 °C for several hours or just heated in air at the same temperature. It was showed by vibrating sample magnetometer (VSM) that samples heat treated in H2 could show strong ferromagnetism at room temperature while samples treated in air only show very weak magnetism. XRD using Co kα X-ray revealed that the samples heated in H2 were not pure phase but like a granular system and the magnetism mainly results from Fe3O4 in samples while samples heated in air showed pure ZnO phase. Our work indicated that H2 deoxidation treatment may be an effective technique to fabricate such magnetic semiconductor-like materials with Curie temperature higher than room temperature.  相似文献   

12.
Non-stoichiometric CoxFe3???xO4/SiO2 (x = 0.8, 0.9, 1.0, 1.1) nanocomposites have been prepared by sol-gel method. The structure, morphology and magnetic properties of the obtained samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy at room temperature. As the Co2?+? content increases, the average particle size of the spherical CoxFe3???xO4 in the samples decreases and the lattice constants increases. The hyperfine fields for both A- and B-site decrease, while the fraction of Co2?+? occupying the A-site increases. Magnetization measurements show the saturation magnetization and coercivity of CoxFe3???xO4/SiO2 decrease with increasing Co2?+? content. The decrease in magnetization results from the weakened A-B interactions between Fe3?+?, and the change in coercivity can be related to the variation of Co2?+? at B-site and the decreasing particle size.  相似文献   

13.
NiFe2O4 nanoparticles have been synthesized by co-precipitation method at 145°C in N2 atmosphere using ethylene glycol as solvent and capping agent. This gives the promising synthesis route for nanoparticles at low temperature. The as-synthesized NiFe2O4 is subsequently heated at 400°C, 500°C, 700°C and 800°C. Crystallite size increases with the heat treatment temperature. The heat treatment temperature has direct effect on the electron paramagnetic resonance and intrinsic magnetic properties. The room temperature Mössbauer spectrum of the 800°C heated sample shows the two sextets pattern indicating that the sample is ferrimagnetic and Fe3?+? ions occupy both tetrahedral and octahedral sites of spinel structure.  相似文献   

14.
Microwave–hydrothermal (MH) route was employed to synthesize various iron oxide phases in ultra-fine crystalline powders by using ferrous sulphate and sodium hydroxide as starting chemicals. All chemical reactions were carried out under identical MH conditions, namely, at 190°C, 154 psi, 30 min, by varying the molar ratio (MR) of FeSO4/NaOH in the aqueous solutions. The variation of MR has a dramatic effect on the crystallization behavior of various phases of iron oxides under MH processing conditions. For example, spherical agglomerates of Fe3O4 powder were obtained if MR equal to 0.133 (pH?>?10 sample A). On the other hand non-stoichiometric Fe3O4 powders (Sample B) were obtained for all higher MR of FeSO4/NaOH between 0.133 and 4.00 (6.6?2O3 powders (sample C) were produced. Fe57 Mössbauer spectra were recorded for all the three sets of samples at room temperature. In the case of sample B, temperature dependent Mössbauer spectra were recorded in the range of 77–300 K to understand the non-stoichiometric nature of Fe3O4 powders. All these results are discussed in the present paper.  相似文献   

15.
Polycrystalline sample of Ca3Nb2O8 was prepared by a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound, studied in a wide frequency range (102-106 Hz) at different temperatures (25-500 °C), exhibit a dielectric anomaly suggesting phase transition of ferroelectric-paraelectric and structural type at 300 °C. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of bulk effect in the material in the studied temperature range. Studies of electrical conductivity over a wide temperature range suggest that the compound has negative temperature coefficient of resistance behavior.  相似文献   

16.
Ultrafine particles of Co1???x Li x Fe2O4 (x?= 0, 0.2) samples are prepared by glycine–nitrate combustion route. X-ray diffraction and transmission electron microscopy studies show that the samples have cubic spinel structure and average crystallite sizes of x?= 0 and 0.2 are 36 and 44 nm respectively. Vibrating sample magnetometer studies revealed the ferromagnetic nature of the samples. Li-doped CoFe2O4 sample showed higher values of coercive field, remanent magnetization and saturation magnetization compared to pure CoF2O4 indicating the enhancement of magnetic interactions. Mössbauer spectra at 77 K exhibited two broad sextets indicating that Fe3?+? ions occupy both tetrahedral and octahedral sites. From these studies, it is concluded that Co1???x Li x Fe2O4 (x?= 0, 0.2) samples exhibit an inverse spinel structure. At room temperature, two sextets are superimposed on a very broad non-Lorentzian background indicating the presence of superparamgnetic fraction in agreement with the microscopic observations.  相似文献   

17.
The local atomic order around very dilute indium impurities in c-axis-oriented YBa2Cu3O7 and YBa2Cu3O6.25 films at room temperature and in YBa2Cu3Ox bulk powders held in air or oxygen over a wide temperature range were investigated using 111In/Cd \gamma--\gamma perturbed angular correlation (PAC) spectroscopy. The probe atoms occupy a single substitutional lattice position in YBa2Cu3Ox, and evidence reported here strongly supports previous claims that this is the yttrium position. In YBa2Cu3Ox powders, the local atomic order changes continuously with temperature. At room temperature the electric field gradient measured by PAC in bulk YBa2Cu3Ox powder is indistinguishable from that in the fully oxygenated YBa2Cu3O7 film. Near the decomposition temperature, the bulk YBa2Cu3Ox powder data are semiquantitatively similar to data in the room temperature YBa2Cu3O6.25 film, with quantitative differences that we attribute to temperature averaging in the former. Other sites usually found in PAC spectra of YBa2Cu3Ox bulk samples arise from 111In dissolved in Y2BaCuO5 and Y2Cu2O5 impurity phases. The latter phase apparently arises because of significant barium loss during processing; the barium deficiency is clearly demonstrated by comparison of PAC data with the alloy phase diagram above the decomposition temperature. PAC data on pure Y2Cu2O5 are reported here also. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The Co–ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 °C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 °C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (~CoFe2O4) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (~Co0.6Fe2.4O4). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe2O4, the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles’ composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic properties are strongly affected by the synthesis method used.  相似文献   

19.
PbO–Sb2O3–As2O3 glasses mixed with different concentrations of MoO3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy and differential thermal analysis techniques. The X-ray diffraction and the scanning electron microscopic studies have revealed the presence of Pb5Sb2O8, PbSb2O6, SbAsO4, Sb2MoO6, Sb4Mo10O31, As4Mo3O15, Pb5Sb4O11 crystalline phases in these samples. The differential thermal analysis indicated that the surface crystallization prevails over the bulk crystallization as the concentration of the crystallizing agent is increased. The infrared (IR) spectral studies exhibit bands due to MoO4 structural units in addition to the conventional bands due to various antimonate and arsenate structural groups. The studies on PbO–Sb2O3–As2O3: MoO3 glass-ceramics with respect to various physical properties viz., dielectric properties over a range of frequency and temperature, optical absorption, electron spin resonance (ESR) and magnetic susceptibility at room temperature have also been reported. The optical absorption, ESR and magnetic susceptibility studies indicated that the molybdenum ions exist in Mo5+ state in addition to Mo6+ state in these samples. The redox ratio found to increase as the concentration of the MoO3 is increased. The variations observed in all these properties with the concentration of the crystallizing agent have been analyzed in the light of different oxidation states and environment of molybdenum ions in the glass ceramic network.  相似文献   

20.
An investigation of the synthesis of Fe3O4 nanopowders by the co-precipitation method is reported from aqueous and ethanol mediums. X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer are utilized to study the effect of variation of synthesis conditions on the crystal structure, crystallite size, microstructure and magnetic properties of the formed powders. The XRD analysis showed that the crystalline Fe3O4 phase was formed at Fe3+/Fe2+ molar ratio 2.0 prepared at room temperature for 1 h at pH 10. The crystallite size was in the range between 8 and 11 nm. TEM micrographs showed that the particles appeared as nanospheres. Superparamagnetic nanoparticles with low coercivity and remanence magnetization were achieved. Heating properties of the nanosphere samples in an alternating magnetic field at 160 KHz were evaluated. An excellent heating efficiency for the sample prepared in ethanol medium is a result of more relaxation losses occurring due to its small particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号