首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Molecular simulation of fluid systems in the presence of surfaces require computationally expensive calculations due to the large number of solid–fluid pair interactions involved. Representing the explicit solid as a continuous wall with an effective potential can significantly reduce the computational time and allows exploring larger temporal and spatial scales. The well-known (10-4-3) Steele potential is one such analytic expression that faithfully represents the effective solid–fluid interactions for homonuclear crystalline solids with hexagonal lattice symmetry. However, this and most of the effective potentials found in the literature have been developed for fluids and solids interacting exclusively through Lennard-Jones potentials. In this work, we extend the Steele model to obtain the effective wall–fluid potentials for Mie force fields. We perform molecular dynamics simulations of coarse-grained fluids modelled via the SAFT force field approach in the presence of explicit and implicit surfaces to compare structural and dynamic properties in both representations. Also, we study the adsorption of ethane into slit-like pores with explicit and implicit surfaces via grand canonical Monte Carlo simulations. We explore the validity and the improvement in the simulation performance as well as the limitations of the proposed expression.  相似文献   

2.
Gibbs ensemble Monte Carlo simulations have been performed for systems of square-well spherocylinders of different length-to-breadth ratio. The results are used to test a recent perturbation theory proposed for this kind of system. In addition, the results are compared to similar simulations performed for a Kihara fluid of elongated molecules. An unexpected good agreement is found for the coexistence thermodynamic and structural properties of both model fluids, hence suggesting that the hard spherocylinder plus square-well interaction should be considered as a reference potential for a perturbative treatment of more complex fluid models.  相似文献   

3.
Extension of Chandler—Silbey—Ladanyi (CSL) integral equation theory for the fluid of semi-flexible site—site molecules is proposed. The Percus—Yevick type of the closure is used to describe the structural properties of the fluid consisting of semiflexible linear chain triatomic molecules. Results for the site—site intramolecular and intermolecular radial distribution functions (RDFs) are compared with the corresponding computer simulation results and results of self-consistent reference interaction site model (RISM) theory. In general both theories give reasonably good agreement with corresponding Monte Carlo simulation data. The exception is the RDF between the terminal sites, for which none of the theories is satisfactory. The present version of CSL theory appears to be slightly more accurate than the self-consistent RISM approach.  相似文献   

4.
The long-range triangle-well fluid has been studied using three different approaches: firstly, by an analytical equation of state obtained by a perturbation theory, secondly via a self-consistent integral equation theory, the so-called self-consistent Ornstein–Zernike approach (SCOZA) which is presently one of the most accurate liquid-state theories, and finally by Monte Carlo simulations. We present vapour–liquid phase diagrams and thermodynamic properties such as the internal energy and the pressure as a function of the density at different temperatures and for several values of the potential range. We assess the accuracy of the theoretical approaches by comparison with Monte Carlo simulations: the SCOZA method accurately predicts the thermodynamics of these systems and the first-order perturbation theory reproduces the overall thermodynamic behaviour for ranges greater than two molecular diameters except that it overestimates the critical point. The simplicity of the equation of state and the fact that it is analytical in the potential range makes it a good candidate to be used for calculating other thermodynamic properties and as an ingredient in more complex theoretical approaches.  相似文献   

5.
Though the notion of effective charge has been widely used to fit experimental data, the possibility of predicting this adjustable parameter through a model remains unclear. A likely reason for this is the complexity involved in the theoretical approaches in the case of fluids with large asymmetries between their components. This paper deals with several condensation theories for spherical colloids, developed to provide effective charge values from simple models. Liquidlike structures are formed in colloidal dispersions for a set of latexes with different properties (charge, size, and polymeric composition). Effective charges are determined from experimental structure factors using a Derjaguin-Landau-Verwey-Overbeek potential and an Ornstein-Zernike scheme. The numerical coincidence between effective and post-condensation charges is fairly acceptable only for latexes with small size and charge. A simple approach based on the Manning condensation theory for linear polyelectrolytes is also discussed.  相似文献   

6.
7.
A Barker-Henderson like perturbation theory for polyatomic fluids is developed. The molecular interaction forces are assumed to be described by an interaction site model potential and the reference system is a fluid of hard interaction site model molecules.

The theory is used to study the equation of state of nitrogen, the theoretical results being compared with experimental data and with those coming from other theories. The agreement between theory and experiment is as good as that shown by Barker and Henderson theory for monoatomic systems.  相似文献   

8.
ABSTRACT

A comparison of simulation results with the prediction of the structural properties of square-shoulder fluids is carried out to assess the performance of three theories: Tang–Lu's first-order mean spherical approximation, the simplified exponential approximation of the latter and the rational-function approximation. These three theoretical developments share the characteristic of being analytical in Laplace space and of reducing in the proper limit to the Percus–Yevick result for the hard-sphere fluid. Overall, the best agreement with the simulation data is obtained with the simplified exponential approximation.  相似文献   

9.
Much theory of the structures of fluids depends on the assumption of pair-additive forces between the particles. Simulations and experiments have shown that many molten salts, molecular fluids and other systems have structures that depend sensitively on polarization of their electron clouds, or on other internal distortions. In such cases, the forces are not pair additive and the theoretical calculation of structure, expressed as a radial distribution function, g(r), is not possible using the ordinary methods. Part of the problem is that the internal structure is quantum mechanical. A theoretical method for the calculation of the structure of a fluid of polarizable particles is presented here, in a form that may be applied to any one of many structure theories in common use. The method is inspired by work on the simulation of polarizable fluids. It is applied to a simple model of a molten salt with polarizable ions. The theory is applicable to particles carrying any combination of induced electrical multipole moments, along with charges and permanent moments.  相似文献   

10.
Pulsatile and oscillatory flows are prevalent in many biological, industrial, and natural systems. Nuclear magnetic resonance (NMR) is a noninvasive method for evaluating fluid mechanics and can be used to obtain spatially resolved velocity maps in simple and complex fluids. A system has been constructed to provide a controllable and predictable oscillatory flow in order to gain a better understanding of the impact of oscillatory flow on Newtonian and non-Newtonian fluids, specifically water, xanthan gum, polyacrylamide and a colloidal suspension. A core shell particle colloidal suspension is used as a model system since measurements can be obtained separately from the suspending fluid (water) and the liquid particle core (hexadecane oil) using NMR. The oscillatory flow system coupled with NMR measures the velocity distributions and dynamics of the fluid undergoing oscillatory flow at specific points in the oscillation cycle.  相似文献   

11.
A thermodynamic perturbation theory for mixtures of fluids composed of particles interacting via discrete potentials is presented, based on previous work for pure component systems. Square-well and square-shoulder mixtures are accurately described by this theory, giving the necessary information for studying a wide range of discrete potential fluids. As an example of this, the theory is applied to a discrete Lennard-Jones mixture, obtaining very good results when compared against computer simulation values. The scope of this work is to implement perturbation theory for discrete potential systems in modern theories for complex fluids.  相似文献   

12.
The direct correlation function (DCF) plays an important role in liquid integral-equation theories and non-mean-field applications of the classical density functional theory (DFT). While for a simple fluid the DCF can easily be calculated from the radial distribution function via the Fourier transform and/or, for special cases, can be derived from analytical solutions of the Ornstein–Zernike equation, computation of the site–site DCFs of a molecular fluid is more challenging because of numerical issues associated with solving the matrix integral equations. This paper describes a new theoretical method for accurate evaluation of the site–site DCFs of molecular fluids by combination of molecular simulation and analytical asymptotic analysis. The computational procedure entails four steps: (1) molecular simulation is used to calculate the site–site total correlation functions (TCFs) in real space; (2) the reference-interaction-site model (RISM) is used to calculate the site–site DCFs in Fourier space at large wavenumbers; (3) asymptotic expressions are derived for the TCFs and DCFs in the limit of small wavenumbers; and (4) site–site DCFs over the entire range are obtained by interpolation of the asymptotic results. The numerical procedure has been illustrated by application to bulk SPC/E water. Accurate evaluation of the site–site DCFs for water lays a foundation for future applications of the DFT to aqueous systems with atomic details.  相似文献   

13.
周世琦 《中国物理》2007,16(4):1167-1175
A universal theoretical approach is proposed which enables all hard sphere density functional approximations (DFAs) applicable to van der Waals fluids. The resultant DFA obtained by combining the universal theoretical approach with any hard sphere DFAs only needs as input a second-order direct correlation function (DCF) of a coexistence bulk fluid, and is applicable in both supercritical and subcritical temperature regions. The associated effective hard sphere density can be specified by a hard wall sum rule. It is indicated that the value of the effective hard sphere density so determined can be universal, i.e. can be applied to any external potentials different from the single hard wall. As an illustrating example, the universal theoretical approach is combined with a hard sphere bridge DFA to predict the density profile of a hard core attractive Yukawa model fluid influenced by diverse external fields; agreement between the present formalism's predictions and the corresponding simulation data is good or at least comparable to several previous DFT approaches. The primary advantage of the present theoretical approach combined with other hard sphere DFAs is discussed.  相似文献   

14.
Yanshuang Kang 《中国物理 B》2022,31(5):56104-056104
Based on the free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for the design and characterization of novel materials.  相似文献   

15.
We present two new perturbation density functional theories to investigate non-uniform fluids of associating molecules. Each fluid molecule is modelled as a spherical hard core with four highly anisotropic square well sites placed in tetrahedral symmetry on the hard core surface. In one theory we apply the weighting from Tarazona's hard sphere density functional theory to Wertheim's bulk first-order perturbation theory. The other theory uses the inhomogeneous form of Wertheim's theory as a perturbation to Tarazona's hard-sphere density functional theory. Each theory approaches Tarazona's theory in the limit of zero association. We compare results from theory and simulation for density profiles, fraction of monomers, and adsorption of an associating fluid against a hard, smooth wall over a range of temperatures and densities. The non-uniform fluid theory which uses Tarazona's weighting of Wertheim's theory in the bulk is in good agreement with computer simulation results.  相似文献   

16.
采用相对论Hartree-Fock(RHF)理论来描述奇特核的性质.为了研究Fock项和矢量介子对奇特核性质的贡献和避免有效相互作用的不惟一性,本文推广应用没有自由参数的密度有关的相对论Hartree(RDH)和Hartree-Fock(RDHF)理论来描述奇特核的性质.在RDH和RDHF近似下,计算了钙同位素链的性质,特别研究了Fock交换项和矢量介子的贡献.研究表明交换项和矢量介子对非常丰中子核的性质,如结合能,中子均方根半径,中子密度分布的影响是非常不同于对稳定线附近核性质的影响.同时,对研究滴线奇特核性质的重要性及其理论模型做了简单的讨论.  相似文献   

17.
A dipolar–quadrupolar contribution to the residual Helmholtz energy for a polar square well (a square well plus either a point dipole or a point quadrupole) fluid is developed based on the Padé approximation. Taking the square well system as reference, the contribution is formulated using an expansion for radial distribution function of the reference system. In addition to square well potential parameters the contribution depends only on dipole and quadrupole moments. This term is added as perturbation to a generalized equation of state for square well fluids. The results are then compared with the available simulation data in the literature. With the new equation obtained, it was possible to predict liquid–vapour equilibrium properties and critical properties of polar square well fluids more accurately than with available perturbation theories for multipolar square well systems. Application of the equation of state to a real dipolar (water) and a real quadrupolar (carbon dioxide) fluid indicated that the polar contribution greatly improved the predictions of saturation properties. Accurate prediction of critical properties for polar square well fluids remains as a challenge. This work can be useful in the development of better equations of state.  相似文献   

18.
Complex fluids, such as polymer solutions and blends, colloids, and gels, are of growing interest in fundamental and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesoscopic structural length scale intermediate between the atomic and macroscopic scales. This mesoscopic structure of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently viscoelastic (showing a combination of viscous and elastic behavior), with their dynamic response depending on the time and length scales. Recently, noninvasive methods to infer the rheological response of complex fluids have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a viscoelastic fluid is monitored with the aid of light scattering or microscopy. Here, we propose an alternative to traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of “avoided crossing” between modes associated with the structural relaxation and critical fluctuations that are spontaneously generated in the system.  相似文献   

19.
20.
We have obtained by Monte Carlo NVT simulations the constant-volume excess heat capacity of square-well fluids for several temperatures, densities and potential widths. Heat capacity is a thermodynamic property much more sensitive to the accuracy of a theory than other thermodynamic quantities, such as the compressibility factor. This is illustrated by comparing the reported simulation data for the heat capacity with the theoretical predictions given by the Barker-Henderson perturbation theory as well as with those given by a non-perturbative theoretical model based on Baxter's solution of the Percus-Yevick integral equation for sticky hard spheres. Both theories give accurate predictions for the equation of state. By contrast, it is found that the Barker-Henderson theory strongly underestimates the excess heat capacity for low to moderate temperatures, whereas a much better agreement between theory and simulation is achieved with the non-perturbative theoretical model, particularly for small well widths, although the accuracy of the latter worsens for high densities and low temperatures, as the well width increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号